让我们假设我用MNIST示例编写TFRecords文件(https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/how_tos/reading_data/convert_to_records.py) 这样做是这样的:
writer = tf.python_io.TFRecordWriter(filename)
for index in range(num_examples):
image_raw = images[index].tostring()
example = tf.train.Example(features=tf.train.Features(feature={
'height': _int64_feature(rows),
'width': _int64_feature(cols),
'depth': _int64_feature(depth),
'label': _int64_feature(int(labels[index])),
'image_raw': _bytes_feature(image_raw)}))
writer.write(example.SerializeToString())
writer.close()
然后在其他一些脚本中加载它。但我找到的唯一方法是将其作为张量运行并提取数据,其中r
是迭代器record_iter = tf.python_io.tf_record_iterator(db_path)
中的一条记录
with tf.Session() as sess_tmp:
single_ex = (sess_tmp.run(tf.parse_single_example(r,features={
'height': tf.FixedLenFeature([], tf.int64),
'width': tf.FixedLenFeature([], tf.int64),
'depth': tf.FixedLenFeature([], tf.int64),
'image_raw': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64),
})))
然后可以使用single_ex['height']
检索数据。
但是,在我看来,必须有一个更简单的方法。我似乎无法找到相应的.proto来检索数据。而数据肯定在那里。这是r
的转储:
?
?
image_raw?
?
?&00>a?????????????(??Y??aC\?z??;??\????\e?\i???
??)L???^
?y????~??a???4??G??<????.M???n???t????VBљ?<???اZ???\?????,I?ņ
depth
label
width
height
答案 0 :(得分:6)
tf.train.Example.ParseFromString()
可用于将字符串转换为protobuf对象:
r = ... # String object from `tf.python_io.tf_record_iterator()`.
example_proto = tf.train.Example()
example_proto.ParseFromString(r)
此协议缓冲区的架构可在tensorflow/core/example/example.proto
中找到。