groupby on NaN-only列给出了IndexError

时间:2016-10-17 14:00:21

标签: python pandas dataframe group-by nan

以下是IndexError:index out of bounds:

import pandas as pd
from numpy import nan

df1 = pd.DataFrame({'Date': {0: '2016-10-11', 1: '2016-10-11', 2: '2016-10-11', 3: '2016-10-11', 4: '2016-10-11',5: '2016-10-11'}, 'Stock': {0: 'ABC', 1: 'ABC', 2: 'ABC', 3: 'ABC', 4: 'ABC', 5: 'XYZ'}, 'StartTime': {0: '08:00:00.241', 1: '08:00:00.243', 2: '12:34:23.563', 3: '08:14.05.908', 4: '18:54:50.100', 5: '10:08:36.657'}, 'EndTime': {0: nan,1: nan, 2: nan, 3: nan, 4: nan, 5: nan}})

df1.groupby(['Stock','EndTime']).head(1)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/users/.../egg_cache/p/pandas-0.16.2-py2.7-linux-x86_64.egg/pandas/core/groupby.py", line 994, in head
   in_head = self._cumcount_array() < n
File "/users/.../egg_cache/p/pandas-0.16.2-py2.7-linux-x86_64.egg/pandas/core/groupby.py", line 1034, in _cumcount_array
   arr = np.arange(self.grouper._max_groupsize, dtype='int64')
File "pandas/src/properties.pyx", line 34, in pandas.lib.cache_readonly.__get__ (pandas/lib.c:41917)
File "/users/.../egg_cache/p/pandas-0.16.2-py2.7-linux-x86_64.egg/pandas/core/groupby.py", line 1343, in _max_groupsize
   if self.indices:
File "pandas/src/properties.pyx", line 34, in pandas.lib.cache_readonly.__get__ (pandas/lib.c:41917)
File "/users/.../egg_cache/p/pandas-0.16.2-py2.7-linux-x86_64.egg/pandas/core/groupby.py", line 1309, in indices
    return _get_indices_dict(label_list, keys)
File "/users/.../egg_cache/p/pandas-0.16.2-py2.7-linux-x86_64.egg/pandas/core/groupby.py", line 3767, in _get_indices_dict
    return lib.indices_fast(sorter, group_index, keys, sorted_labels)
File "pandas/lib.pyx", line 1385, in pandas.lib.indices_fast (pandas/lib.c:23875)
File "pandas/src/util.pxd", line 41, in util.get_value_at (pandas/lib.c:62901)
IndexError: index out of bounds

但是,如果我排除所有NaN列,它可以正常工作,如下所示:

df1.groupby(['Stock','Date']).head(1)
         Date  EndTime     StartTime Stock
0  2016-10-11      NaN  08:00:00.241   ABC
5  2016-10-11      NaN  10:08:36.657   XYZ

任何想法,如果这是熊猫的错误​​或我在这里遗漏了什么。我正在阅读以下内容:https://github.com/pandas-dev/pandas/issues/11016
如果它是一个错误,任何建议的解决方法,假设摆脱所有Nan列不是一个选项。

更有趣的观察结果:

df1 = pd.DataFrame({'Date': {0: '2016-10-11', 1: '2016-10-11', 2: '2016-10-11', 3: '2016-10-11', 4: '2016-10-11',5: '2016-10-11'}, 'Stock': {0: 'ABC', 1: 'ABC', 2: 'ABC', 3: 'ABC', 4: 'ABC', 5: 'XYZ'}, 'StartTime': {0: '08:00:00.241', 1: '08:00:00.243', 2: '12:34:23.563', 3: '08:14.05.908', 4: '18:54:50.100', 5: '10:08:36.657'}, 'EndTime': {0: nan,1: nan, 2: 1, 3: nan, 4: nan, 5: nan}})

print df1
         Date  EndTime     StartTime Stock
0  2016-10-11      NaN  08:00:00.241   ABC
1  2016-10-11      NaN  08:00:00.243   ABC
2  2016-10-11        1  12:34:23.563   ABC
3  2016-10-11      NaN  08:14.05.908   ABC
4  2016-10-11      NaN  18:54:50.100   ABC
5  2016-10-11      NaN  10:08:36.657   XYZ

df1.groupby(['Stock','EndTime']).head(1)
         Date  EndTime     StartTime Stock
0  2016-10-11      NaN  08:00:00.241   ABC
2  2016-10-11        1  12:34:23.563   ABC

以上输出对我来说不正确。不应该是:

         Date  EndTime     StartTime Stock
0  2016-10-11      NaN  08:00:00.241   ABC
2  2016-10-11        1  12:34:23.563   ABC
5  2016-10-11      NaN  10:08:36.657   XYZ

现在针对以下情况:

df1 = pd.DataFrame({'Date': {0: '2016-10-11', 1: '2016-10-11', 2: '2016-10-11', 3: '2016-10-11', 4: '2016-10-11',5: '2016-10-11'}, 'Stock': {0: 'ABC', 1: 'ABC', 2: 'ABC', 3: 'ABC', 4: 'ABC', 5: 'XYZ'}, 'StartTime': {0: '08:00:00.241', 1: '08:00:00.243', 2: '12:34:23.563', 3: '08:14.05.908', 4: '18:54:50.100', 5: '10:08:36.657'}, 'EndTime': {0: nan,1: nan, 2: nan, 3: nan, 4: nan, 5: 1}})

print df1
         Date  EndTime     StartTime Stock
0  2016-10-11      NaN  08:00:00.241   ABC
1  2016-10-11      NaN  08:00:00.243   ABC
2  2016-10-11      NaN  12:34:23.563   ABC
3  2016-10-11      NaN  08:14.05.908   ABC
4  2016-10-11      NaN  18:54:50.100   ABC
5  2016-10-11        1  10:08:36.657   XYZ

df1.groupby(['Stock','EndTime']).head(1)
         Date  EndTime     StartTime Stock
0  2016-10-11      NaN  08:00:00.241   ABC
5  2016-10-11        1  10:08:36.657   XYZ

这个很好。

1 个答案:

答案 0 :(得分:0)

@Rahul,这是使用Pandas 0.19.0时代码的输出:

In [5]: df1
Out[5]:
         Date  EndTime     StartTime Stock
0  2016-10-11      NaN  08:00:00.241   ABC
1  2016-10-11      NaN  08:00:00.243   ABC
2  2016-10-11      NaN  12:34:23.563   ABC
3  2016-10-11      NaN  08:14.05.908   ABC
4  2016-10-11      NaN  18:54:50.100   ABC
5  2016-10-11      NaN  10:08:36.657   XYZ

In [6]: df1.groupby(['Stock','EndTime']).head(1)
Out[6]:
         Date  EndTime     StartTime Stock
0  2016-10-11      NaN  08:00:00.241   ABC

In [7]: df1.groupby(['Stock','Date']).head(1)
Out[7]:
         Date  EndTime     StartTime Stock
0  2016-10-11      NaN  08:00:00.241   ABC
5  2016-10-11      NaN  10:08:36.657   XYZ

In [8]: df1 = pd.DataFrame({'Date': {0: '2016-10-11', 1: '2016-10-11', 2: '2016-10-11', 3: '2016-10-11', 4: '2016-10-11',5: '2016-10-11'}, 'Stock': {
   ...: 0: 'ABC', 1: 'ABC', 2: 'ABC', 3: 'ABC', 4: 'ABC', 5: 'XYZ'}, 'StartTime': {0: '08:00:00.241', 1: '08:00:00.243', 2: '12:34:23.563', 3: '08:14
   ...: .05.908', 4: '18:54:50.100', 5: '10:08:36.657'}, 'EndTime': {0: nan,1: nan, 2: 1, 3: nan, 4: nan, 5: nan}})
   ...:

In [9]: df1.groupby(['Stock','EndTime']).head(1)
Out[9]:
         Date  EndTime     StartTime Stock
0  2016-10-11      NaN  08:00:00.241   ABC
2  2016-10-11      1.0  12:34:23.563   ABC

In [10]: df1 = pd.DataFrame({'Date': {0: '2016-10-11', 1: '2016-10-11', 2: '2016-10-11', 3: '2016-10-11', 4: '2016-10-11',5: '2016-10-11'}, 'Stock':
    ...: {0: 'ABC', 1: 'ABC', 2: 'ABC', 3: 'ABC', 4: 'ABC', 5: 'XYZ'}, 'StartTime': {0: '08:00:00.241', 1: '08:00:00.243', 2: '12:34:23.563', 3: '08:
    ...: 14.05.908', 4: '18:54:50.100', 5: '10:08:36.657'}, 'EndTime': {0: nan,1: nan, 2: nan, 3: nan, 4: nan, 5: 1}})
    ...:

In [11]: df1.groupby(['Stock','EndTime']).head(1)
Out[11]:
         Date  EndTime     StartTime Stock
0  2016-10-11      NaN  08:00:00.241   ABC
5  2016-10-11      1.0  10:08:36.657   XYZ