我想计算数据集中每位作者的合作次数,我的数据就像
第一列是作者,第二列是文章ID。所以每篇文章都是由一位独家作者或几位作者撰写的。
我使用的代码基本上是一个循环,
degree1 <- rep(NA, length(Name))
for(i in 1:length(Name)){
temp <- subset(mydata, mydata$data == Name[i])
temp <- subset(mydata, mydata[, 2] %in% temp$artid)
CC <- unique(temp$data)
degree1[i] <- length(CC) - 1
print(i)
}
其中Name是使用
的作者向量Name <- unique(mydata$data)
但是这种循环非常慢,因为我有超过100万作者,有没有快速的方法呢?
答案 0 :(得分:1)
library(data.table)
# make dataset
n = 20
set.seed(123)
x = data.table(
author = LETTERS[1:n],
artid = sample.int(n, replace = T)
)
x = x[order(artid)]
# collaborations
x[, n := uniqueN(author), by = artid]
答案 1 :(得分:0)
我读完了评论,我想我得到了你想要达到的目标 我创建了一个模仿你情况的虚拟例子。
library(dplyr)
art_id <- c(11, 11, 11, 10, 10)
author <- c("Ajay","Vijay","Shyam",
"Ajay","Tarun")
uniq_art <- unique(art_id) # get unique article id
所以在这种情况下,Ajay与三位作者合作('Shyam', 'Vijay'和'Tarun')。
Shyam和Vijay各自与两位作者合作 Tarun只与一位作者合作。 我对你的问题的解决方案不是很优雅。 希望有人能提供更优雅的解决方案。
# Make the data frame
publish <- data.frame(art_id, author)
# subset for a particular aritcle ID
# group by author and get the number of authors each author
# has worked with
b <- publish %>% filter(art_id == uniq_art[1])
c <- b %>% group_by(author) %>% summarise(ans = dim(b)[1]-1)
# Repeat the process and join results to above data frame
# for the remaining article IDs
for(i in 2:length(uniq_art)) {
b <- publish %>% filter(art_id == uniq_art[i])
d <- b %>% group_by(author) %>% summarise(ans = dim(b)[1]-1)
c <- full_join(c, d, by = "author")
}
# get the number of columns
nc <- ncol(c)
# sample output after running loop in my dummy case
# A tibble: 4 x 3
author ans.x ans.y
<fctr> <dbl> <dbl>
1 Ajay 2 1
2 Shyam 2 NA
3 Vijay 2 NA
4 Tarun NA 1
# Add all numeric values in each row to get total collaborated authors
total_collab <- rowSums(c[,2:nc], na.rm = T)
final_ans <- c %>% mutate(total = total_collab)
final_ans
# A tibble: 4 x 4
author ans.x ans.y total
<fctr> <dbl> <dbl> <dbl>
1 Ajay 2 1 3
2 Shyam 2 NA 2
3 Vijay 2 NA 2
4 Tarun NA 1 1
希望这有帮助。