我想在Name上加入以下spark数据帧:
df1 = spark.createDataFrame([("Mark", 68), ("John", 59), ("Mary", 49)], ['Name', 'Weight'])
df2 = spark.createDataFrame([(31, "Mark"), (32, "Mark"), (41, "John"), (42, "John"), (43, "John")],[ 'Age', 'Name'])
但我希望结果是以下数据帧:
df3 = spark.createDataFrame([([31, 32], "Mark", 68), ([41, 42, 43], "John", 59), `(None, "Mary", 49)],[ 'Age', 'Name', 'Weight'])
答案 0 :(得分:2)
您可以使用模块collect_list
中的pyspark.sql.functions
。它收集与给定键相关的给定列的所有值。如果您想要包含唯一元素的列表,请使用collect_set
。
import pyspark.sql.functions as F
df1 = spark.createDataFrame([("Mark", 68), ("John", 59), ("Mary", 49)], ['Name', 'Weight'])
df2 = spark.createDataFrame([(31, "Mark"), (32, "Mark"), (41, "John"), (42, "John"), (43, "John")],[ 'Age', 'Name'])
df2_grouped = df.groupBy("Name").agg(F.collect_list(F.col("Age")).alias("Age"))
df_joined = df2_grouped.join(df1, "Name", "outer")
df_joined.show()
结果:
+----+------------+------+
|Name| Age|Weight|
+----+------------+------+
|Mary| null| 49|
|Mark| [32, 31]| 68|
|John|[42, 43, 41]| 59|
+----+------------+------+
答案 1 :(得分:0)
DataFrame等效于Spark SQL中的关系表。您可以分组,加入,然后选择。
from pyspark import SparkContext
from pyspark.sql import SQLContext
from pyspark.sql.functions import *
sc = SparkContext()
sql = SQLContext(sc)
df1 = sql.createDataFrame([("Mark", 68), ("John", 59), ("Mary", 49)], ['Name', \
'Weight'])
df2 = sql.createDataFrame([(31, "Mark"), (32, "Mark"), (41, "John"), (42, "John\
"), (43, "John")],[ 'Age', 'Name'])
grouped = df2.groupBy(['Name']).agg(collect_list("Age").alias('age_list'))
joined_df = df1.join(grouped, df1.Name == grouped.Name, 'left_outer')
print(joined_df.select(grouped.age_list, df1.Name, df1.Weight).collect())
结果
[Row(age_list=None, Name=u'Mary', Weight=49), Row(age_list=[31, 32], Name=u'Mark', Weight=68), Row(age_list=[41, 42, 43], Name=u'John', Weight=59)]