spark将CSV转换为libsvm格式

时间:2016-10-14 07:28:37

标签: apache-spark

我有一个包含州,年龄,性别,工资等的CSV文件作为自变量。

依赖变量是流失。

在spark中,我们需要将数据帧转换为libsvm格式。你能告诉我怎么做吗?

libsvm格式为:0 128:51

作为一个特征值,这意味着第128列中的值为51。

2 个答案:

答案 0 :(得分:0)

我正在使用hadoop,但逻辑应该相同。我已经为您的用例创建了示例。首先,我创建数据框,然后删除所有具有null或空值的行。之后创建RDD并将Row转换为libsvm格式。 "重新分配(1)"意味着一切只会进入一个文件。例如,将有一个结果列。在CTR预测的情况下,它将仅为1或0。

示例文件输入:

"zip","city","state","latitude","longitude","timezone","dst"
"00210","Portsmouth","NH","43.005895","-71.013202","-5","1"
"00211","Portsmouth","NH","43.005895","-71.013202","-5","1"
"00212","Portsmouth","NH","43.005895","-71.013202","-5","1"
"00213","Portsmouth","NH","43.005895","-71.013202","-5","1"
"00214","Portsmouth","NH","43.005895","-71.013202","-5","1"
"00215","Portsmouth","NH","43.005895","-71.013202","-5","1"
"00501","Holtsville","NY","40.922326","-72.637078","-5","1"
"00544","Holtsville","NY","40.922326","-72.637078","-5","1"

public class LibSvmConvertJob {

    private static final String SPACE = " ";
    private static final String COLON = ":";

    public static void main(String[] args) {

        SparkConf sparkConf = new SparkConf().setMaster("local[2]").setAppName("Libsvm Convertor");

        JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf);

        SQLContext sqlContext = new SQLContext(javaSparkContext);

        DataFrame inputDF = sqlContext.read().format("com.databricks.spark.csv").option("header", "true")
                .load("/home/raghunandangupta/inputfiles/zipcode.csv");

        inputDF.printSchema();

        sqlContext.udf().register("convertToNull", (String v1) -> (v1.trim().length() > 0 ? v1.trim() : null), DataTypes.StringType);

        inputDF = inputDF.selectExpr("convertToNull(zip)","convertToNull(city)","convertToNull(state)","convertToNull(latitude)","convertToNull(longitude)","convertToNull(timezone)","convertToNull(dst)").na().drop();

        inputDF.javaRDD().map(new Function<Row, String>() {
            private static final long serialVersionUID = 1L;
            @Override
            public String call(Row v1) throws Exception {
                StringBuilder sb = new StringBuilder();
                sb.append(hashCode(v1.getString(0))).append("\t")   //Resultant column
                .append("1"+COLON+hashCode(v1.getString(1))).append(SPACE)
                .append("2"+COLON+hashCode(v1.getString(2))).append(SPACE)
                .append("3"+COLON+hashCode(v1.getString(3))).append(SPACE)
                .append("4"+COLON+hashCode(v1.getString(4))).append(SPACE)
                .append("5"+COLON+hashCode(v1.getString(5))).append(SPACE)
                .append("6"+COLON+hashCode(v1.getString(6)));
                return sb.toString();
            }
            private String hashCode(String value) {
                return Math.abs(Hashing.murmur3_32().hashString(value, StandardCharsets.UTF_8).hashCode()) + "";
            }
        }).repartition(1).saveAsTextFile("/home/raghunandangupta/inputfiles/zipcode");

    }
}

答案 1 :(得分:0)

/*
/Users/mac/matrix.txt
1 0.5 2.4 3.0
1 99 34 6454
2 0.8 3.0 4.5
*/
def concat(a:Array[String]):String ={
  var result=a(0)+" "
  for(i<-1 to a.size.toInt-1) 
  result=result+i+":"+a(i)(0)+" "
  return result
}
val rfile=sc.textFile("file:///Users/mac/matrix.txt")
val f=rfile.map(line => line.split(' ')).map(i=>concat(i))

我相信我有一个更简单的解决方案。