pandas切片多索引数据帧

时间:2016-10-13 15:08:28

标签: python pandas dataframe pivot-table multi-index

我想切片多索引pandas数据帧

这是获取我的测试数据的代码:

SWT.PaintItem

给出:

enter image description here

现在我只能import pandas as pd testdf = { 'Name': { 0: 'H', 1: 'H', 2: 'H', 3: 'H', 4: 'H'}, 'Division': { 0: 'C', 1: 'C', 2: 'C', 3: 'C', 4: 'C'}, 'EmployeeId': { 0: 14, 1: 14, 2: 14, 3: 14, 4: 14}, 'Amt1': { 0: 124.39, 1: 186.78, 2: 127.94, 3: 258.35000000000002, 4: 284.77999999999997}, 'Amt2': { 0: 30.0, 1: 30.0, 2: 30.0, 3: 30.0, 4: 60.0}, 'Employer': { 0: 'Z', 1: 'Z', 2: 'Z', 3: 'Z', 4: 'Z'}, 'PersonId': { 0: 14, 1: 14, 2: 14, 3: 14, 4: 15}, 'Provider': { 0: 'A', 1: 'A', 2: 'A', 3: 'A', 4: 'B'}, 'Year': { 0: 2012, 1: 2012, 2: 2013, 3: 2013, 4: 2012}} testdf = pd.DataFrame(testdf) testdf grouper_keys = [ 'Employer', 'Year', 'Division', 'Name', 'EmployeeId', 'PersonId'] testdf2 = pd.pivot_table(data=testdf, values='Amt1', index=grouper_keys, columns='Provider', fill_value=None, margins=False, dropna=True, aggfunc=('sum', 'count'), ) print(testdf2) sum使用

获得A
B

给出了

enter image description here

我如何仅testdf2.loc[:, slice(None, ('sum', 'A'))] sum

获得 count A

2 个答案:

答案 0 :(得分:5)

使用xs作为横截面

testdf2.xs('A', axis=1, level=1)

enter image description here

或者将列级保持为drop_level=False

testdf2.xs('A', axis=1, level=1, drop_level=False)

enter image description here

答案 1 :(得分:4)

您可以使用:

idx = pd.IndexSlice
df = testdf2.loc[:, idx[['sum', 'count'], 'A']]
print (df)
                                                    sum count
Provider                                              A     A
Employer Year Division Name EmployeeId PersonId              
Z        2012 C        H    14         14        311.17   2.0
                                       15           NaN   NaN
         2013 C        H    14         14        386.29   2.0

另一种解决方案:

df = testdf2.loc[:, (slice('sum','count'), ['A'])]
print (df)
                                                    sum count
Provider                                              A     A
Employer Year Division Name EmployeeId PersonId              
Z        2012 C        H    14         14        311.17   2.0
                                       15           NaN   NaN
         2013 C        H    14         14        386.29   2.0