Keras - 用于图像和蒙版的大型数据集的生成器

时间:2016-10-13 15:03:39

标签: python machine-learning computer-vision theano keras

我正在尝试构建一个包含其输入和输出(蒙版)图像的模型。 由于数据集的大小和我有限的内存,我尝试使用the Generator Approach introduced in the Keras Documentation

# Provide the same seed and keyword arguments to the fit and flow methods
seed = 1

image_generator = image_datagen.flow_from_directory(
    'data/images',
    class_mode=None,
    seed=seed)

mask_generator = mask_datagen.flow_from_directory(
    'data/masks',
    class_mode=None,
    seed=seed)

# combine generators into one which yields image and masks
train_generator = zip(image_generator, mask_generator)

model.fit_generator(
    train_generator,
    samples_per_epoch=2000,
    nb_epoch=50)

除非代码到达此行,否则一切似乎都有效:

train_generator = zip(image_generator, mask_generator)

似乎将两个列表明确压缩的过程使它们生成了它们的内容,并且系统开始消耗大量RAM,直到它耗尽内存。

使用Generators的目的是避免在这段代码正好相反的情况下耗尽RAM。

有没有办法解决这个问题?

1 个答案:

答案 0 :(得分:5)

您可以使用itertools.izip()返回迭代器而不是列表。

itertools.izip(*iterables)

Make an iterator that aggregates elements from each of the iterables. Like zip() except that it returns an iterator instead of a list. Used for lock-step iteration over several iterables at a time.