我想使用Java实现ARIMA时间序列。 我有以下Scala代码:
object SingleSeriesARIMA {
def main(args: Array[String]): Unit = {
// The dataset is sampled from an ARIMA(1, 0, 1) model generated in R.
val lines = scala.io.Source.fromFile("../data/R_ARIMA_DataSet1.csv").getLines()
val ts = Vectors.dense(lines.map(_.toDouble).toArray)
val arimaModel = ARIMA.fitModel(1, 0, 1, ts)
println("coefficients: " + arimaModel.coefficients.mkString(","))
val forecast = arimaModel.forecast(ts, 20)
println("forecast of next 20 observations: " + forecast.toArray.mkString(","))
}
}
我尝试过以下解决方案:
public class JavaARIMA {
public static void main(String args[])
{
System.setProperty("hadoop.home.dir", "C:/winutils");
SparkConf conf = new SparkConf().setAppName("Spark-TS Ticker Example").setMaster("local").set("spark.sql.warehouse.dir", "file:///C:/Users/devanshi/Downloads/Spark/sparkdemo/spark-warehouse/");
JavaSparkContext context = new JavaSparkContext(conf);
JavaRDD<String> lines = context.textFile("path/inputfile");
JavaRDD<Vector> ts = lines.map(
new Function<String, Vector>() {
public Vector call(String s) {
String[] sarray = s.split(",");
double[] values = new double[sarray.length];
for (int i = 0; i < sarray.length; i++) {
values[i] = Double.parseDouble(sarray[i]);
}
return Vectors.dense(values);
}
}
);
double[] total = {1.0,0.0,1.0};
//DenseVector dv = new DenseVector(total);
//convert(dv,toBreeze());
//ARIMAModel arimaModel = ARIMA.fitModel(1, 0, 1, dv, true, "css-cgd", null);
ARIMAModel arimaModel = ARIMA.fitModel(1, 0, 1, (Vector) ts, false, "css-cgd", total);
// arimaModel = ARIMA.fitModel(1, 0, 1, ts);
System.out.println("coefficients: " + arimaModel.coefficients());
Vector forcst = arimaModel.forecast((Vector) ts,20);
System.out.println("forecast of next 20 observations: " + forcst);
}
}
但我得到了:
Exception in thread "main" java.lang.ClassCastException:
org.apache.spark.api.java.JavaRDD cannot be cast to
org.apache.spark.mllib.linalg.Vector
请尽可能帮助我。
答案 0 :(得分:1)
您不能将转换JavaRDD键入Vector,而是需要使用rdd.foreach来获取单个Vector。所以代码可能是这样的。
ts.foreach(new VoidFunction<Vector>() {
@Override
public void call(Vector v) throws Exception {
double[] total = { 1.0, 0.0, 1.0 };
ARIMAModel arimaModel = ARIMA.fitModel(1, 0, 1, (Vector) v, false, "css-cgd", total);
System.out.println("coefficients: " + arimaModel.coefficients());
Vector forcst = arimaModel.forecast((Vector) v, 20);
System.out.println("forecast of next 20 observations: " + forcst);
}
});
希望这会有所帮助......