我有一些跟踪看起来像下面的示例。我希望能够删除在06:00之前和18:00之后出现的行,即夜间值。
tracks <- read.table(text = "
05/04/2015 16:04, 53.3854 , -6.29421
05/04/2015 17:17, 53.38464, -6.29412
05/04/2015 17:33, 53.38457, -6.29409
05/04/2015 17:49, 53.38463, -6.29418
05/04/2015 19:20, 53.38458, -6.29408
05/04/2015 19:49, 53.38452, -6.29394
05/04/2015 20:19, 53.38464, -6.29411
05/04/2015 21:20, 53.38441, -6.29421
06/04/2015 07:13, 53.38459, -6.29414
06/04/2015 08:30, 53.3846, -6.29414
06/04/2015 16:56, 53.38458, -6.29413
06/04/2015 17:05, 53.38469, -6.29416
06/04/2015 17:13, 53.38464, -6.29409
06/04/2015 17:26, 53.38463, -6.29412
06/04/2015 17:39, 53.38463, -6.29411
06/04/2015 19:51, 53.38465, -6.29411
06/04/2015 21:29, 53.38451, -6.29415"
, header = F, sep = ",")
答案 0 :(得分:2)
您可以先从B^A^
中提取小时和分钟,然后将其用于V1
行的子集:
track
答案 1 :(得分:2)
import os, os.path, time
import matplotlib.pyplot as mplot
from PIL import Image
import numpy as np
files = os.listdir('./images')
print files
img = Image.open(os.path.join('./images', files[0])
image_stack = np.ndarray((len(files), img.shape[0], img.shape[1], 3), dtype=np.float32)
for i, file in enumerate(files):
img = Image.open('./images/'+file)
img = np.float32(img)
image_stack[i] = img
avg_img = np.mean(image_stack, axis=0)
avg_img = np.clip(avg_img, 0, 255)
avg_img = avg_img.astype(np.uint8)
mplot.imshow(avg_img)
mplot.show()
difference_stack = image_stack[1:] - image_stack[:-1]
解决方案:
lubdridate