如何转换数据格式,如:
James Smith was born on November 17, 1948
类似
("James Smith", DOB, "November 17, 1948")
无需依赖字符串的位置索引
我试过以下
from nltk import word_tokenize, pos_tag
new = "James Smith was born on November 17, 1948"
sentences = word_tokenize(new)
sentences = pos_tag(sentences)
grammar = "Chunk: {<NNP*><NNP*>}"
cp = nltk.RegexpParser(grammar)
result = cp.parse(sentences)
print(result)
如何继续进行所需的输出。
答案 0 :(得分:1)
在修剪空格并分配给name和dob
之后,将字符串拆分为'was born on'答案 1 :(得分:1)
您可以随时使用正则表达式。
正则表达式(\S+)\s(\S+)\s\bwas born on\b\s(\S+)\s(\S+),\s(\S+)
将匹配并返回上面特定字符串格式的数据。
这里有效:https://regex101.com/r/W2ykKS/1
python中的正则表达式:
import re
regex = r"(\S+)\s(\S+)\s\bwas born on\b\s(\S+)\s(\S+),\s(\S+)"
test_str = "James Smith was born on November 17, 1948"
matches = re.search(regex, test_str)
# group 0 in a regex is the input string
print(matches.group(1)) # James
print(matches.group(2)) # Smith
print(matches.group(3)) # November
print(matches.group(4)) # 17
print(matches.group(5)) # 1948