所有
我的数据框有四列('key1','key2','data1','data2')。我在data1中插入了一些nan。现在,我希望在groupby(['key1', 'key2'])
之后用每个组中最具有值的值填充nan。
dt = pd.DataFrame ({'key1': np.random.choice(['a', 'b'], size=100),
'key2': np.random.choice(['c', 'd'], size=100),
'data1': np.random.randint(5, size=100),
'data2': np.random.randn(100)},
columns = ['key1', 'key2','data1', 'data2'])
#insert nan
dt['data1'].ix[[2,6,10]]= None
# group by key1 and key2
group =dt.groupby(['key1', 'key2'])['data1']
group.value_counts(dropna=False)
key1 key2 data1
a c 1.0 8
4.0 6
0.0 4
2.0 2
3.0 1
d 0.0 7
1.0 6
4.0 6
2.0 5
NaN 3
3.0 1
b c 0.0 7
2.0 7
1.0 3
3.0 2
4.0 2
d 2.0 11
1.0 10
0.0 3
3.0 3
4.0 3
我要做的是,对于此示例,使用0.0填充data1列中的nan(组中最常见的值(key1 = a,key2 = d)。
非常感谢你的帮助!
答案 0 :(得分:1)
使用.transform(lambda y: y.fillna(y.value_counts().idxmax()))
在
key1 key2 data1
a c 1.0 6
3.0 5
0.0 4
2.0 3
4.0 3
NaN 1
d 1.0 11
3.0 9
0.0 5
2.0 5
4.0 5
b c 4.0 7
0.0 4
3.0 4
2.0 3
NaN 2
1.0 1
d 4.0 6
1.0 5
2.0 5
3.0 4
0.0 2
Name: data1, dtype: int64
应用.transform(lambda y: y.fillna(y.value_counts().idxmax()))
dt['nan_filled'] = dt.groupby(['key1', 'key2'])['data1'].transform(lambda y: y.fillna(y.value_counts().idxmax()))
group = dt.groupby(['key1', 'key2'])['nan_filled']
group.value_counts(dropna=False)
key1 key2 nan_filled
a c 1.0 7
3.0 5
0.0 4
2.0 3
4.0 3
d 1.0 11
3.0 9
0.0 5
2.0 5
4.0 5
b c 4.0 9
0.0 4
3.0 4
2.0 3
1.0 1
d 4.0 6
1.0 5
2.0 5
3.0 4
0.0 2
Name: nan_filled, dtype: int64