我正在尝试在我的测试框架中设置Spark-MongoDB连接器。我的StreamingContext设置如下:
val conf = new SparkConf()
.setMaster("local[*]")
.setAppName("test")
.set("spark.mongodb.input.uri", "mongodb://localhost:27017/testdb.testread")
.set("spark.mongodb.output.uri", "mongodb://localhost:27017/testdb.testwrite")
lazy val ssc = new StreamingContext(conf, Seconds(1))
每当我尝试设置这样的DStream时:
val records = new ConstantInputDStream(ssc, ssc.sparkContext.makeRDD(seq))
我遇到了这个错误
java.lang.IllegalStateException:无法在已停止的SparkContext上调用方法。
看起来上下文正在开始然后立即停止,但我无法弄清楚原因。日志不会给出任何错误。这是它完成开始然后立即停止的地方:
DEBUG] 2016-10-06 18:29:51,625 org.spark_project.jetty.util.component.AbstractLifeCycle setStarted - STARTED @ 4858ms o.s.j.s.ServletContextHandler@33b85bc {/ metrics / json,null,AVAILABLE} [WARN] 2016-10-06 18:29:51,660 org.apache.spark.streaming.StreamingContext logWarning - StreamingContext尚未开始 [DEBUG] 2016-10-06 18:29:51,662 org.spark_project.jetty.util.component.AbstractLifeCycle setStopping - 停止org.spark_project.jetty.server.Server@2139a5fc [DEBUG] 2016-10-06 18:29:51,664 org.spark_project.jetty.server.Server doStop - 正常关闭org.spark_project.jetty.server.Server@2139a5fc
当我删除mongodb连接设置时,它没有关闭,一切都很好(除了我不能读/写mongo :()
编辑: 这是我尝试写入mongo的测试。但是,在我达到这一点之前,我的测试套件失败了。
"read from kafka queue" in new SparkScope{
val stream = KafkaUtils.createDirectStream[String, String](
ssc,
PreferConsistent,
Subscribe[String, String](List("topic"),
Map[String, Object](
"bootstrap.servers"->s"localhost:${kServer.kafkaPort}",
"key.deserializer" -> classOf[StringDeserializer],
"value.deserializer" -> classOf[StringDeserializer],
"group.id" -> "testing",
"auto.offset.reset" -> "latest",
"enable.auto.commit" -> (false: java.lang.Boolean)
)
)
)
val writeConfig = WriteConfig(Map(
"collection"->"testcollection",
"writeConcern.w"->"majority",
"db"->"testdb"
), Some(WriteConfig(ssc.sparkContext)))
stream.map(r => (r.key.toLong, r.value.toLong))
.reduceByKey(_+_)
.map{case (k,v) => {
val d = new Document()
d.put("key", k)
d.put("value", v)
d
}}
.foreachRDD(rdd => rdd.saveToMongoDB(writeConfig))
ssc.start
(1 until 10).foreach(x => producer.send(KafkaProducerRecord("topic", "1", "1")))
ssc.awaitTerminationOrTimeout(1500)
ok
}
当我尝试从scala集合创建流时,会发生失败:
"return a single record with the correct sum" in new SparkScope{
val stream = new ConstantInputDStream(ssc, ssc.sparkContext.makeRDD(seq))
val m = HashMap.empty[Long,Long]
FlattenTimeSeries.flatten(stream).foreachRDD(rdd => m ++= rdd.collect())
ssc.start()
ssc.awaitTerminationOrTimeout(1500)
m.size === 1 and m(1) === 20
}
SparkScope类只是创建我在上面显示的StreamingContext并在测试后调用ssc.stop()
答案 0 :(得分:1)
知道了。问题是SparkConf
变量未声明为lazy
,但StreamingContext
是。我不确定为什么重要,但事实确实如此。固定的。