读取多个ENVI文件并将它们组合在一个csv中

时间:2016-10-06 14:57:17

标签: r csv envi

我在与R合作方面相当新,但试图完成这项工作。我有几十个ENVI光谱数据集存储在一个目录中。每个数据集分成两个文件。它们都具有相同的名称约定,即:

  • ID_YYYYMMDD_350-200nm.asr
  • ID_YYYYMMDD_350-200nm.hdr

任务是读取数据集,添加两列(文件名中的ID和日期),并将结果存储在* .csv文件中。我把它用于单个文件(硬编码)。

library(caTools)

setwd("D:/some/path/software_scripts")

### filename without extension
name <- "011a_20100509_350-2500nm"

### split filename in area-id and date
flaeche<-substr(name, 0, 4)
date <- as.Date((substr(name,6,13)),"%Y%m%d")

### get values from ENVI-file in a matrix
spectrum <- read.ENVI(paste(name,".esl", sep = ""), headerfile=paste(name,".hdr", sep=""))

### add columns
spectrum <- cbind(Flaeche=flaeche,Datum=as.character(date),spectrum)


### CSV-Dataset with all values
write.csv(spectrum, file = name,".csv", sep=",")

我想将所有可用文件合并到一个* .csv文件中。我知道我要使用list.files但不知道如何实现read.ENVI函数并将生成的矩阵添加到CSV中。

更新

library(caTools)

setwd("D:/some/path/mean")

files <- list.files() # change or leave totally empty if setwd() put you in the right spot

all_names <- sub("^([^.]*).*", "\\1", files) # strip off extensions

name <- unique(all_names) # get rid of duplicates from .esl and .hdr

# wrap your existing code in a function
mungeENVI <- function(name) {

  # split filename in area-id and date
  flaeche<-substr(name, 0, 4)
  date <- as.Date((substr(name,6,13)),"%Y%m%d")

  # get values from ENVI-file in a matrix
  spectrum <- read.ENVI(paste(name,".esl", sep = ""), headerfile=paste(name,".hdr", sep=""))

  # add columns
  spectrum <- cbind(Flaeche=flaeche,Datum=as.character(date),spectrum)
  return(spectrum)
}

# use lapply to 'loop' over each name
list_of_ENVIs <- lapply(name, mungeENVI) # returns a list

# use do.call(rbind, x) to turn it into a big data.frame
final_df <- do.call(rbind, list_of_ENVIs)

# now write output
write.csv(final_df, "all_results.csv")

您可以在此处找到示例数据集:Sample dataset

1 个答案:

答案 0 :(得分:0)

我使用大量实验室数据,我可以依赖输出文件的可靠格式(相同的列顺序,列名,标题格式等)。所以这假设您拥有的.ENVI文件与此类似。如果您的文件不是这样的,我也很乐意为您提供帮助,我只需要查看一两个虚拟文件。

无论如何,这个想法是:

library(caTools)
library(lubridate)
library(magrittr)

setwd("~/Binfo/TST/Stack/") # adjust as needed

files <- list.files("data/", full.name = T) # adjust as needed
all_names <- gsub("\\.\\D{3}", "", files) # strip off extensions
names1 <- unique(all_names) # get rid of duplicates

# wrap your existing code in a function
mungeENVI <- function(name) {
    # split filename in area-id and date
    f <- gsub(".*\\/(\\d{3}\\D)_.*", "\\1", name)
    d <- gsub(".*_(\\d+)_.*", "\\1", name) %>% ymd()
    # get values from ENVI-file in a matrix
    spectrum <- read.ENVI(paste(name,".esl", sep = ""), headerfile=paste(name,".hdr", sep=""))
    # add columns
    spectrum <- cbind(Flaeche=f,Datum= as.character(d),spectrum)
    return(spectrum)
}
# use lapply to 'loop' over each name
list_of_ENVIs <- lapply(names1, mungeENVI) # returns a list

# use do.call(rbind, x) to turn it into a big data.frame
final_df <- do.call(rbind, list_of_ENVIs)
# now write output
write.csv(final_df, "data/all_results.csv")

如果您有任何问题,请告诉我们,我们从那里开始。欢呼声。

我稍微编辑了我的答案,我认为你遇到的问题是list.files()它应该有参数full.name = T。我还调整了解析方法,使其更具防御性并使用grep捕获表达式。我用你的两个示例文件测试了代码(真的是4个),但我可以构建一个大矩阵(66743个元素)。我还使用了lubridate,我认为这是处理日期和时间的更好方式。