我一直在搞乱Keras,到目前为止还喜欢它。在使用相当深的网络时,我遇到了一个很大的问题:当调用model.train_on_batch或model.fit等时,Keras分配的GPU内存比模型本身应该需要的多得多。这不是因为尝试训练一些非常大的图像,而是网络模型本身似乎需要大量的GPU内存。我创建了这个玩具示例来展示我的意思。这基本上是什么:
我首先创建一个相当深的网络,并使用model.summary()来获取网络所需的参数总数(在本例中为206538153,相当于大约826 MB)。然后我使用nvidia-smi来查看Keras分配了多少GPU内存,我可以看到它非常有意义(849 MB)。
然后我编译网络,并确认这不会增加GPU内存使用量。正如我们在这种情况下所看到的,此时我有几乎1 GB的VRAM可用。
然后我尝试将一个简单的16x16图像和1x1基础事实提供给网络,然后一切都爆炸了,因为Keras开始再次分配大量内存,这对我来说是没有理由的。关于培训网络的一些东西似乎需要比仅拥有模型更多的内存,这对我来说没有意义。在其他框架中,我已经在这个GPU上训练了更深层次的网络,这让我觉得我使用Keras是错误的(或者我的设置或者Keras中出现了错误,但当然&#39 ;很难确定。)
以下是代码:
from scipy import misc
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation, Convolution2D, MaxPooling2D, Reshape, Flatten, ZeroPadding2D, Dropout
import os
model = Sequential()
model.add(Convolution2D(256, 3, 3, border_mode='same', input_shape=(16,16,1)))
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2)))
model.add(Convolution2D(512, 3, 3, border_mode='same'))
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2)))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(Convolution2D(1024, 3, 3, border_mode='same'))
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2)))
model.add(Convolution2D(256, 3, 3, border_mode='same'))
model.add(Convolution2D(32, 3, 3, border_mode='same'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(4))
model.add(Dense(1))
model.summary()
os.system("nvidia-smi")
raw_input("Press Enter to continue...")
model.compile(optimizer='sgd',
loss='mse',
metrics=['accuracy'])
os.system("nvidia-smi")
raw_input("Compiled model. Press Enter to continue...")
n_batches = 1
batch_size = 1
for ibatch in range(n_batches):
x = np.random.rand(batch_size, 16,16,1)
y = np.random.rand(batch_size, 1)
os.system("nvidia-smi")
raw_input("About to train one iteration. Press Enter to continue...")
model.train_on_batch(x, y)
print("Trained one iteration")
这为我提供了以下输出:
Using Theano backend.
Using gpu device 0: GeForce GTX 960 (CNMeM is disabled, cuDNN 5103)
/usr/local/lib/python2.7/dist-packages/theano/sandbox/cuda/__init__.py:600: UserWarning: Your cuDNN version is more recent than the one Theano officially supports. If you see any problems, try updating Theano or downgrading cuDNN to version 5.
warnings.warn(warn)
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
convolution2d_1 (Convolution2D) (None, 16, 16, 256) 2560 convolution2d_input_1[0][0]
____________________________________________________________________________________________________
maxpooling2d_1 (MaxPooling2D) (None, 8, 8, 256) 0 convolution2d_1[0][0]
____________________________________________________________________________________________________
convolution2d_2 (Convolution2D) (None, 8, 8, 512) 1180160 maxpooling2d_1[0][0]
____________________________________________________________________________________________________
maxpooling2d_2 (MaxPooling2D) (None, 4, 4, 512) 0 convolution2d_2[0][0]
____________________________________________________________________________________________________
convolution2d_3 (Convolution2D) (None, 4, 4, 1024) 4719616 maxpooling2d_2[0][0]
____________________________________________________________________________________________________
convolution2d_4 (Convolution2D) (None, 4, 4, 1024) 9438208 convolution2d_3[0][0]
____________________________________________________________________________________________________
convolution2d_5 (Convolution2D) (None, 4, 4, 1024) 9438208 convolution2d_4[0][0]
____________________________________________________________________________________________________
convolution2d_6 (Convolution2D) (None, 4, 4, 1024) 9438208 convolution2d_5[0][0]
____________________________________________________________________________________________________
convolution2d_7 (Convolution2D) (None, 4, 4, 1024) 9438208 convolution2d_6[0][0]
____________________________________________________________________________________________________
convolution2d_8 (Convolution2D) (None, 4, 4, 1024) 9438208 convolution2d_7[0][0]
____________________________________________________________________________________________________
convolution2d_9 (Convolution2D) (None, 4, 4, 1024) 9438208 convolution2d_8[0][0]
____________________________________________________________________________________________________
convolution2d_10 (Convolution2D) (None, 4, 4, 1024) 9438208 convolution2d_9[0][0]
____________________________________________________________________________________________________
convolution2d_11 (Convolution2D) (None, 4, 4, 1024) 9438208 convolution2d_10[0][0]
____________________________________________________________________________________________________
convolution2d_12 (Convolution2D) (None, 4, 4, 1024) 9438208 convolution2d_11[0][0]
____________________________________________________________________________________________________
convolution2d_13 (Convolution2D) (None, 4, 4, 1024) 9438208 convolution2d_12[0][0]
____________________________________________________________________________________________________
convolution2d_14 (Convolution2D) (None, 4, 4, 1024) 9438208 convolution2d_13[0][0]
____________________________________________________________________________________________________
convolution2d_15 (Convolution2D) (None, 4, 4, 1024) 9438208 convolution2d_14[0][0]
____________________________________________________________________________________________________
convolution2d_16 (Convolution2D) (None, 4, 4, 1024) 9438208 convolution2d_15[0][0]
____________________________________________________________________________________________________
convolution2d_17 (Convolution2D) (None, 4, 4, 1024) 9438208 convolution2d_16[0][0]
____________________________________________________________________________________________________
convolution2d_18 (Convolution2D) (None, 4, 4, 1024) 9438208 convolution2d_17[0][0]
____________________________________________________________________________________________________
convolution2d_19 (Convolution2D) (None, 4, 4, 1024) 9438208 convolution2d_18[0][0]
____________________________________________________________________________________________________
convolution2d_20 (Convolution2D) (None, 4, 4, 1024) 9438208 convolution2d_19[0][0]
____________________________________________________________________________________________________
convolution2d_21 (Convolution2D) (None, 4, 4, 1024) 9438208 convolution2d_20[0][0]
____________________________________________________________________________________________________
convolution2d_22 (Convolution2D) (None, 4, 4, 1024) 9438208 convolution2d_21[0][0]
____________________________________________________________________________________________________
convolution2d_23 (Convolution2D) (None, 4, 4, 1024) 9438208 convolution2d_22[0][0]
____________________________________________________________________________________________________
convolution2d_24 (Convolution2D) (None, 4, 4, 1024) 9438208 convolution2d_23[0][0]
____________________________________________________________________________________________________
maxpooling2d_3 (MaxPooling2D) (None, 2, 2, 1024) 0 convolution2d_24[0][0]
____________________________________________________________________________________________________
convolution2d_25 (Convolution2D) (None, 2, 2, 256) 2359552 maxpooling2d_3[0][0]
____________________________________________________________________________________________________
convolution2d_26 (Convolution2D) (None, 2, 2, 32) 73760 convolution2d_25[0][0]
____________________________________________________________________________________________________
maxpooling2d_4 (MaxPooling2D) (None, 1, 1, 32) 0 convolution2d_26[0][0]
____________________________________________________________________________________________________
flatten_1 (Flatten) (None, 32) 0 maxpooling2d_4[0][0]
____________________________________________________________________________________________________
dense_1 (Dense) (None, 4) 132 flatten_1[0][0]
____________________________________________________________________________________________________
dense_2 (Dense) (None, 1) 5 dense_1[0][0]
====================================================================================================
Total params: 206538153
____________________________________________________________________________________________________
None
Thu Oct 6 09:05:42 2016
+------------------------------------------------------+
| NVIDIA-SMI 352.63 Driver Version: 352.63 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 960 Off | 0000:01:00.0 On | N/A |
| 30% 37C P2 28W / 120W | 1082MiB / 2044MiB | 9% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1796 G /usr/bin/X 155MiB |
| 0 2597 G compiz 65MiB |
| 0 5966 C python 849MiB |
+-----------------------------------------------------------------------------+
Press Enter to continue...
Thu Oct 6 09:05:44 2016
+------------------------------------------------------+
| NVIDIA-SMI 352.63 Driver Version: 352.63 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 960 Off | 0000:01:00.0 On | N/A |
| 30% 38C P2 28W / 120W | 1082MiB / 2044MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1796 G /usr/bin/X 155MiB |
| 0 2597 G compiz 65MiB |
| 0 5966 C python 849MiB |
+-----------------------------------------------------------------------------+
Compiled model. Press Enter to continue...
Thu Oct 6 09:05:44 2016
+------------------------------------------------------+
| NVIDIA-SMI 352.63 Driver Version: 352.63 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 960 Off | 0000:01:00.0 On | N/A |
| 30% 38C P2 28W / 120W | 1082MiB / 2044MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1796 G /usr/bin/X 155MiB |
| 0 2597 G compiz 65MiB |
| 0 5966 C python 849MiB |
+-----------------------------------------------------------------------------+
About to train one iteration. Press Enter to continue...
Error allocating 37748736 bytes of device memory (out of memory). Driver report 34205696 bytes free and 2144010240 bytes total
Traceback (most recent call last):
File "memtest.py", line 65, in <module>
model.train_on_batch(x, y)
File "/usr/local/lib/python2.7/dist-packages/keras/models.py", line 712, in train_on_batch
class_weight=class_weight)
File "/usr/local/lib/python2.7/dist-packages/keras/engine/training.py", line 1221, in train_on_batch
outputs = self.train_function(ins)
File "/usr/local/lib/python2.7/dist-packages/keras/backend/theano_backend.py", line 717, in __call__
return self.function(*inputs)
File "/usr/local/lib/python2.7/dist-packages/theano/compile/function_module.py", line 871, in __call__
storage_map=getattr(self.fn, 'storage_map', None))
File "/usr/local/lib/python2.7/dist-packages/theano/gof/link.py", line 314, in raise_with_op
reraise(exc_type, exc_value, exc_trace)
File "/usr/local/lib/python2.7/dist-packages/theano/compile/function_module.py", line 859, in __call__
outputs = self.fn()
MemoryError: Error allocating 37748736 bytes of device memory (out of memory).
Apply node that caused the error: GpuContiguous(GpuDimShuffle{3,2,0,1}.0)
Toposort index: 338
Inputs types: [CudaNdarrayType(float32, 4D)]
Inputs shapes: [(1024, 1024, 3, 3)]
Inputs strides: [(1, 1024, 3145728, 1048576)]
Inputs values: ['not shown']
Outputs clients: [[GpuDnnConv{algo='small', inplace=True}(GpuContiguous.0, GpuContiguous.0, GpuAllocEmpty.0, GpuDnnConvDesc{border_mode='half', subsample=(1, 1), conv_mode='conv', precision='float32'}.0, Constant{1.0}, Constant{0.0}), GpuDnnConvGradI{algo='none', inplace=True}(GpuContiguous.0, GpuContiguous.0, GpuAllocEmpty.0, GpuDnnConvDesc{border_mode='half', subsample=(1, 1), conv_mode='conv', precision='float32'}.0, Constant{1.0}, Constant{0.0})]]
HINT: Re-running with most Theano optimization disabled could give you a back-trace of when this node was created. This can be done with by setting the Theano flag 'optimizer=fast_compile'. If that does not work, Theano optimizations can be disabled with 'optimizer=None'.
HINT: Use the Theano flag 'exception_verbosity=high' for a debugprint and storage map footprint of this apply node.
有几点需要注意:
答案 0 :(得分:17)
忘记激活和渐变也采用vram而不仅仅是参数,增加内存使用量是一个非常常见的错误。 backprob计算本身使得训练阶段几乎是神经网络前向/推理使用的VRAM的两倍。
因此,在创建网络的初期,仅分配参数。但是,当训练开始时,激活(每个小批量的时间)被分配,以及反向计算,增加内存使用。
答案 1 :(得分:13)
Theano和Tensorflow都增强了创建的符号图,尽管两者都不同。
要分析内存消耗的发生方式,您可以从较小的模型开始,然后将其增长以查看内存中的相应增长。同样,您可以增长batch_size
以查看相应的内存增长。
以下是根据您的初始代码增加batch_size
的代码段:
from scipy import misc
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation, Convolution2D, MaxPooling2D, Reshape, Flatten, ZeroPadding2D, Dropout
import os
import matplotlib.pyplot as plt
def gpu_memory():
out = os.popen("nvidia-smi").read()
ret = '0MiB'
for item in out.split("\n"):
if str(os.getpid()) in item and 'python' in item:
ret = item.strip().split(' ')[-2]
return float(ret[:-3])
gpu_mem = []
gpu_mem.append(gpu_memory())
model = Sequential()
model.add(Convolution2D(100, 3, 3, border_mode='same', input_shape=(16,16,1)))
model.add(Convolution2D(256, 3, 3, border_mode='same'))
model.add(Convolution2D(32, 3, 3, border_mode='same'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(4))
model.add(Dense(1))
model.summary()
gpu_mem.append(gpu_memory())
model.compile(optimizer='sgd',
loss='mse',
metrics=['accuracy'])
gpu_mem.append(gpu_memory())
batches = []
n_batches = 20
batch_size = 1
for ibatch in range(n_batches):
batch_size = (ibatch+1)*10
batches.append(batch_size)
x = np.random.rand(batch_size, 16,16,1)
y = np.random.rand(batch_size, 1)
print y.shape
model.train_on_batch(x, y)
print("Trained one iteration")
gpu_mem.append(gpu_memory())
fig = plt.figure()
plt.plot([-100, -50, 0]+batches, gpu_mem)
plt.show()
此外,对于速度,Tensorflow占用了所有可用的GPU内存。要停止此操作,您需要在config.gpu_options.allow_growth = True
get_session()
# keras/backend/tensorflow_backend.py
def get_session():
global _SESSION
if tf.get_default_session() is not None:
session = tf.get_default_session()
else:
if _SESSION is None:
if not os.environ.get('OMP_NUM_THREADS'):
config = tf.ConfigProto(allow_soft_placement=True,
)
else:
nb_thread = int(os.environ.get('OMP_NUM_THREADS'))
config = tf.ConfigProto(intra_op_parallelism_threads=nb_thread,
allow_soft_placement=True)
config.gpu_options.allow_growth = True
_SESSION = tf.Session(config=config)
session = _SESSION
if not _MANUAL_VAR_INIT:
_initialize_variables()
return session
现在,如果你运行prev片段,你会得到如下情节:
Theano:model.compile()
无论需要什么记忆,在训练开始时,它几乎加倍。这是因为Theano增加了符号图以进行反向传播,并且每个张量需要相应的张量来实现梯度的向后流动。内存需求似乎没有batch_size
增长,这对我来说是意外的,因为占位符大小应该增加以适应来自CPU-&gt; GPU的数据流入。
Tensorflow:即使在model.compile()
之后也没有分配GPU内存,因为Keras在实际调用get_session()
之前不会调用_initialize_variables()
。 Tensorflow似乎以速度为单位占用内存,因此内存不会与batch_size
呈线性增长。
说过所有Tensorflow似乎都是内存饥渴,但对于大图来说它非常快......另一方面Theano非常高效,但在训练开始时需要花费大量时间来初始化图形。之后它也很快。
答案 2 :(得分:0)
2Gb GPU的200M参数太多了。此外,您的架构效率不高,使用本地瓶颈将更有效。 此外,您应该从小型号到大型号,而不是向后型,现在您输入16x16,这种架构意味着最终您的大部分网络将被填充为零#34;而不是基于输入功能。 您的模型图层取决于您的输入,因此您无法设置任意数量的图层和大小,您需要计算将多少数据传递给每个图层,并了解为什么这样做。 我建议你观看这个免费课程http://cs231n.github.io