我正在尝试使用python的pandas库确定两个时间序列重叠的时间百分比。数据是非同步的,因此每个数据点的时间不对齐。这是一个例子:
时间序列1
2016-10-05 11:50:02.000734 0.50
2016-10-05 11:50:03.000033 0.25
2016-10-05 11:50:10.000479 0.50
2016-10-05 11:50:15.000234 0.25
2016-10-05 11:50:37.000199 0.50
2016-10-05 11:50:49.000401 0.50
2016-10-05 11:50:51.000362 0.25
2016-10-05 11:50:53.000424 0.75
2016-10-05 11:50:53.000982 0.25
2016-10-05 11:50:58.000606 0.75
时间序列2
2016-10-05 11:50:07.000537 0.50
2016-10-05 11:50:11.000994 0.50
2016-10-05 11:50:19.000181 0.50
2016-10-05 11:50:35.000578 0.50
2016-10-05 11:50:46.000761 0.50
2016-10-05 11:50:49.000295 0.75
2016-10-05 11:50:51.000835 0.75
2016-10-05 11:50:55.000792 0.25
2016-10-05 11:50:55.000904 0.75
2016-10-05 11:50:57.000444 0.75
假设系列保持其值直到下一次更改,确定它们具有相同值的时间百分比的最有效方法是什么?
示例
让我们计算这些系列重叠的时间,从11:50:07.000537开始,到2016-10-05 11:50:57.000444 0.75结束,因为我们有这个时期的两个系列的数据。有重叠的时间:
结果(4.999755 + 12.000096 + 0.000558 + 0.000112)/ 49.999907 = 34%
其中一个问题是我的实际时间序列有更多的数据,例如1000 - 10000次观测,我需要运行更多对。我考虑过向前填充一个系列,然后简单地比较行并将总匹配数除以总行数,但我不认为这会非常有效。
答案 0 :(得分:7)
<强> 设置 强>
创建2个时间序列
from StringIO import StringIO
import pandas as pd
txt1 = """2016-10-05 11:50:02.000734 0.50
2016-10-05 11:50:03.000033 0.25
2016-10-05 11:50:10.000479 0.50
2016-10-05 11:50:15.000234 0.25
2016-10-05 11:50:37.000199 0.50
2016-10-05 11:50:49.000401 0.50
2016-10-05 11:50:51.000362 0.25
2016-10-05 11:50:53.000424 0.75
2016-10-05 11:50:53.000982 0.25
2016-10-05 11:50:58.000606 0.75"""
s1 = pd.read_csv(StringIO(txt1), sep='\s{2,}', engine='python',
parse_dates=[0], index_col=0, header=None,
squeeze=True).rename('s1').rename_axis(None)
txt2 = """2016-10-05 11:50:07.000537 0.50
2016-10-05 11:50:11.000994 0.50
2016-10-05 11:50:19.000181 0.50
2016-10-05 11:50:35.000578 0.50
2016-10-05 11:50:46.000761 0.50
2016-10-05 11:50:49.000295 0.75
2016-10-05 11:50:51.000835 0.75
2016-10-05 11:50:55.000792 0.25
2016-10-05 11:50:55.000904 0.75
2016-10-05 11:50:57.000444 0.75"""
s2 = pd.read_csv(StringIO(txt2), sep='\s{2,}', engine='python',
parse_dates=[0], index_col=0, header=None,
squeeze=True).rename('s2').rename_axis(None)
<强> TL; DR 强>
df = pd.concat([s1, s2], axis=1).ffill().dropna()
overlap = df.index.to_series().diff().shift(-1) \
.fillna(0).groupby(df.s1.eq(df.s2)).sum()
overlap.div(overlap.sum())
False 0.666657
True 0.333343
Name: duration, dtype: float64
<强> 解释 强>
构建基础pd.DataFrame
df
pd.concat
来对齐索引ffill
让值向前传播dropna
在另一个系列开始之前删除一个系列的值df = pd.concat([s1, s2], axis=1).ffill().dropna()
df
计算'duration'
从当前时间戳到下一个
df['duration'] = df.index.to_series().diff().shift(-1).fillna(0)
df
计算重叠
df.s1.eq(df.s2)
给出了s1
与s2
重叠的布尔系列groupby
汇总True
和False
overlap = df.groupby(df.s1.eq(df.s2)).duration.sum()
overlap
False 00:00:33.999548
True 00:00:17.000521
Name: duration, dtype: timedelta64[ns]
具有相同值的时间百分比
overlap.div(overlap.sum())
False 0.666657
True 0.333343
Name: duration, dtype: float64
答案 1 :(得分:3)
很酷的问题。我粗暴地用大熊猫或者numpy强迫这个,但是我得到了你的答案(感谢你的解决)。我还没有测试过任何其他东西。我也不知道它有多快,因为它只通过每个数据帧一次,但不进行任何矢量化。
import pandas as pd
#############################################################################
#Preparing the dataframes
times_1 = ["2016-10-05 11:50:02.000734","2016-10-05 11:50:03.000033",
"2016-10-05 11:50:10.000479","2016-10-05 11:50:15.000234",
"2016-10-05 11:50:37.000199","2016-10-05 11:50:49.000401",
"2016-10-05 11:50:51.000362","2016-10-05 11:50:53.000424",
"2016-10-05 11:50:53.000982","2016-10-05 11:50:58.000606"]
times_1 = [pd.Timestamp(t) for t in times_1]
vals_1 = [0.50,0.25,0.50,0.25,0.50,0.50,0.25,0.75,0.25,0.75]
times_2 = ["2016-10-05 11:50:07.000537","2016-10-05 11:50:11.000994",
"2016-10-05 11:50:19.000181","2016-10-05 11:50:35.000578",
"2016-10-05 11:50:46.000761","2016-10-05 11:50:49.000295",
"2016-10-05 11:50:51.000835","2016-10-05 11:50:55.000792",
"2016-10-05 11:50:55.000904","2016-10-05 11:50:57.000444"]
times_2 = [pd.Timestamp(t) for t in times_2]
vals_2 = [0.50,0.50,0.50,0.50,0.50,0.75,0.75,0.25,0.75,0.75]
data_1 = pd.DataFrame({"time":times_1,"vals":vals_1})
data_2 = pd.DataFrame({"time":times_2,"vals":vals_2})
#############################################################################
shared_time = 0 #Keep running tally of shared time
t1_ind = 0 #Pointer to row in data_1 dataframe
t2_ind = 0 #Pointer to row in data_2 dataframe
#Loop through both dataframes once, incrementing either the t1 or t2 index
#Stop one before the end of both since do +1 indexing in loop
while t1_ind < len(data_1.time)-1 and t2_ind < len(data_2.time)-1:
#Get val1 and val2
val1,val2 = data_1.vals[t1_ind], data_2.vals[t2_ind]
#Get the start and stop of the current time window
t1_start,t1_stop = data_1.time[t1_ind], data_1.time[t1_ind+1]
t2_start,t2_stop = data_2.time[t2_ind], data_2.time[t2_ind+1]
#If the start of time window 2 is in time window 1
if val1 == val2 and (t1_start <= t2_start <= t1_stop):
shared_time += (min(t1_stop,t2_stop)-t2_start).total_seconds()
t1_ind += 1
#If the start of time window 1 is in time window 2
elif val1 == val2 and t2_start <= t1_start <= t2_stop:
shared_time += (min(t1_stop,t2_stop)-t1_start).total_seconds()
t2_ind += 1
#If there is no time window overlap and time window 2 is larger
elif t1_start < t2_start:
t1_ind += 1
#If there is no time window overlap and time window 1 is larger
else:
t2_ind += 1
#How I calculated the maximum possible shared time (not pretty)
shared_start = max(data_1.time[0],data_2.time[0])
shared_stop = min(data_1.time.iloc[-1],data_2.time.iloc[-1])
max_possible_shared = (shared_stop-shared_start).total_seconds()
#Print output
print "Shared time:",shared_time
print "Total possible shared:",max_possible_shared
print "Percent shared:",shared_time*100/max_possible_shared,"%"
输出:
Shared time: 17.000521
Total possible shared: 49.999907
Percent shared: 34.0011052421 %