我正在寻找一个能够模拟经典频率严重性分布的东西,例如: X = sum(i = 1..N,Y_i),其中N例如是泊松分布和Y对数正态分布。
简单天真的numpy脚本将是:
import numpy as np
SIM_NUM = 3
X = []
for _i in range(SIM_NUM):
nr_claims = np.random.poisson(1)
temp = []
for _j in range(nr_claims):
temp.append(np.random.lognormal(0, 1))
X.append(sum(temp))
现在我尝试对其进行矢量化以提高性能。以下更好一点:
N = np.random.poisson(1, SIM_NUM)
X = []
for n in N:
X.append(sum(np.random.lognormal(0, 1, n)))
我的问题是我是否仍然能够对第二个循环进行矢量化?例如,通过模拟所有损失:
N = np.random.poisson(1, SIM_NUM)
# print(N) would lead to something like [1 3 0]
losses = np.random.lognormal(0,1, sum(N))
# print(N) would lead to something like
#[ 0.56750244 0.84161871 0.41567216 1.04311742]
# X should now be [ 0.56750244, 0.84161871 + 0.41567216 + 1.04311742, 0]
我的想法是"智能切片"或"矩阵乘法,A = [[1,0,0,0]],[0,1,1,1],[0,0,0,0]]。但我无法巧妙地将这些想法变得清晰。
我正在寻找最快的X计算。
答案 0 :(得分:3)
我们可以使用np.bincount
,这对于基于区间/ ID的求和操作非常有效,特别是在使用1D
数组时。实现看起来像这样 -
# Generate all poisson distribution values in one go
pv = np.random.poisson(1,SIM_NUM)
# Use poisson values to get count of total for random lognormal needed.
# Generate all those random numbers again in vectorized way
rand_arr = np.random.lognormal(0, 1, pv.sum())
# Finally create IDs using pv as extents for use with bincount to do
# ID based and thus effectively interval-based summing
out = np.bincount(np.arange(pv.size).repeat(pv),rand_arr,minlength=SIM_NUM)
运行时测试 -
功能定义:
def original_app1(SIM_NUM):
X = []
for _i in range(SIM_NUM):
nr_claims = np.random.poisson(1)
temp = []
for _j in range(nr_claims):
temp.append(np.random.lognormal(0, 1))
X.append(sum(temp))
return X
def original_app2(SIM_NUM):
N = np.random.poisson(1, SIM_NUM)
X = []
for n in N:
X.append(sum(np.random.lognormal(0, 1, n)))
return X
def vectorized_app1(SIM_NUM):
pv = np.random.poisson(1,SIM_NUM)
r = np.random.lognormal(0, 1,pv.sum())
return np.bincount(np.arange(pv.size).repeat(pv),r,minlength=SIM_NUM)
关于大型数据集的计时:
In [199]: SIM_NUM = 1000
In [200]: %timeit original_app1(SIM_NUM)
100 loops, best of 3: 2.6 ms per loop
In [201]: %timeit original_app2(SIM_NUM)
100 loops, best of 3: 6.65 ms per loop
In [202]: %timeit vectorized_app1(SIM_NUM)
1000 loops, best of 3: 252 µs per loop
In [203]: SIM_NUM = 10000
In [204]: %timeit original_app1(SIM_NUM)
10 loops, best of 3: 26.1 ms per loop
In [205]: %timeit original_app2(SIM_NUM)
10 loops, best of 3: 77.5 ms per loop
In [206]: %timeit vectorized_app1(SIM_NUM)
100 loops, best of 3: 2.46 ms per loop
所以,我们正在考虑那里的 10x+
加速。
答案 1 :(得分:1)
您正在寻找numpy.add.reduceat
:
N = np.random.poisson(1, SIM_NUM)
losses = np.random.lognormal(0,1, np.sum(N))
x = np.zeros(SIM_NUM)
offsets = np.r_[0, np.cumsum(N[N>0])]
x[N>0] = np.add.reduceat(losses, offsets[:-1])
n == 0
由于reduceat
的工作方式而单独处理的情况。另外,请务必在数组上使用numpy.sum
,而不要使用速度慢得多的sum
。
如果这比其他答案快,则取决于泊松分布的平均值。