这是我在SO中的第一个问题,但我找不到一个好的解决方案,不是在线也不是从我的大脑。 我有一个大字符串(超过100位),我需要删除它的一些数字,以创建一个可被8整除的数字。这真的很简单...... 但是,让我们说创建此号码的唯一方法是使用以' 2'结尾的数字。在这种情况下,我需要寻找合适的10位和100位数字,此时我找不到一个优雅的解决方案。 我有这个:
bool ExistDigit(string & currentNumber, int look1) {
int currentDigit;
int length = currentNumber.length();
for (int i = length - 1; i >= 0; i--) {
currentDigit = -48;//0 in ASC II
currentDigit += currentNumber.back();//sum ASCII's value of char to current Digit
if (currentDigit == look1) {
return true;
}
else
currentNumber.pop_back;
}
return false;
}
它修改了字符串但是因为我首先检查8和0,所以当我检查2时,字符串已经是空的。我通过创建字符串的几个副本来解决这个问题,但我想知道是否有更好的方法,它是什么。
我知道如果我使用ExistDigit(字符串CurrentNumber,int look1),字符串不会被修改,但在这种情况下,它对2没有帮助,因为在找到这两个之后我需要查找1' s ,5'和9' 原始字符串中的2。
解决这类问题的正确方法是什么?我的意思是,我应该坚持改变字符串还是应该返回2的位置值(例如)并从那里开始工作?如果改变字符串是好的,我该怎么做才能重用原始字符串?
我是C ++的新手,也是一般的编码(实际上刚刚开始)所以,对不起,如果这是一个非常愚蠢的问题。提前致谢。
编辑:我的电话看起来像这样:
int main() {
string originalNumber;//hold number. Must be string because number can be too long for ints
cin >> originalNumber;
string answer = "YES";
string strNumber;
//look for 0's and 8's. they are solutions by their own
strNumber = originalNumber;
if (ExistDigit(strNumber, 0)) {
answer += "\n0";
}
else {
strNumber = originalNumber;
if (ExistDigit(strNumber, 8)) {
answer += "\n8";
}
else {
strNumber = originalNumber;
//look for 'even'32, 'even'72, 'odd'12, 'odd'52, 'odd'92
//these are the possibilities for multiples of 8 ended with 2
if (ExistDigit(strNumber, 2)) {
if (ExistDigit(strNumber, 1)) {
}
}
else {
编辑2:如果您遇到同样的问题,请检查函数find_last_of,它非常方便并解决了问题。
答案 0 :(得分:0)
以下代码保留了您的设计,并且至少应该提供一个解决方案(如果存在)。通过使用递归函数,可以在更优雅的解决方案中简化嵌套的if
和for
。使用这种递归函数,您还可以枚举所有解决方案。
您可以使用定义搜索开始的迭代器,而不是拥有该字符串的多个副本。在代码中,start
变量就是这个迭代器。
#include <string>
#include <iostream>
#include <sstream>
using namespace std;
bool ExistDigit(const string & currentNumber, int& start, int look1) {
int currentDigit;
int length = currentNumber.length();
for (int i = length - 1 - start; i >= 0; i--) {
currentDigit = currentNumber[i] - '0';
if (currentDigit == look1) {
start = length - i;
return true;
}
}
return false;
}
int main() {
string originalNumber;//hold number. Must be string because number can be too long for ints
cin >> originalNumber;
stringstream answer;
answer << "YES";
//look for 0's and 8's. they are solutions by their own
int start = 0;
if (ExistDigit(originalNumber, start, 0)) {
answer << "\n0";
}
else {
start = 0;
if (ExistDigit(originalNumber, start, 8)) {
answer << "\n8";
}
else {
start = 0;
//look for 'even'32, 'even'72, 'odd'12, 'odd'52, 'odd'92
//these are the possibilities for multiples of 8 ended with 2
if (ExistDigit(originalNumber, start, 2)) {
for (int look2 = 1; look2 < 10; look2 += 4) {
int startAttempt1 = start;
if (ExistDigit(originalNumber, startAttempt1, look2)) { // 'odd'
for (int look3 = 1; look3 < 10; look3 += 2) {
int startAttempt2 = startAttempt1;
if (ExistDigit(originalNumber, startAttempt2, look3))
answer << "\n" << look3 << look2 << "2";
};
}
};
for (int look2 = 3; look2 < 10; look2 += 4) {
int startAttempt1 = start;
if (ExistDigit(originalNumber, startAttempt1, look2)) // 'even'
answer << "\n" << look2 << "2";
};
}
//look for 'odd'36, 'odd'76, 'even'12, 'even'52, 'even'92
//these are the possibilities for multiples of 8 ended with 2
else if (ExistDigit(originalNumber, start, 6)) {
for (int look2 = 3; look2 < 10; look2 += 4) {
int startAttempt1 = start;
if (ExistDigit(originalNumber, startAttempt1, look2)) { // 'odd'
for (int look3 = 1; look3 < 10; look3 += 2) {
int startAttempt2 = startAttempt1;
if (ExistDigit(originalNumber, startAttempt2, look3))
answer << "\n" << look3 << look2 << "6";
};
}
};
for (int look2 = 1; look2 < 10; look2 += 4) {
int startAttempt1 = start;
if (ExistDigit(originalNumber, startAttempt1, look2)) // 'even'
answer << "\n" << look2 << "6";
};
}
//look for 'even'24, 'even'64, 'odd'44, 'odd'84, 'odd'04
//these are the possibilities for multiples of 8 ended with 2
else if (ExistDigit(originalNumber, start, 6)) {
for (int look2 = 0; look2 < 10; look2 += 4) {
int startAttempt1 = start;
if (ExistDigit(originalNumber, startAttempt1, look2)) { // 'odd'
for (int look3 = 1; look3 < 10; look3 += 2) {
int startAttempt2 = startAttempt1;
if (ExistDigit(originalNumber, startAttempt2, look3))
answer << "\n" << look3 << look2 << "4";
};
}
};
for (int look2 = 2; look2 < 10; look2 += 4) {
int startAttempt1 = start;
if (ExistDigit(originalNumber, startAttempt1, look2)) // 'even'
answer << "\n" << look2 << "4";
};
}
}
}
cout << answer.str() << std::endl;
return 0;
}
当您查找由十进制文本形式的连续字符组成的子词时,这是一个解决方案。
#include <string>
#include <iostream>
bool ExistDigit(const std::string& number, int look) { // look1 = 2**look
// look for a subword of size look that is divisible by 2**look = 1UL << look
for (int i = (int) number.size()-1; i >= 0; --i) {
bool hasFound = false;
unsigned long val = 0;
int shift = look-1;
if (i-shift <= 0)
shift = i;
for (; shift >= 0; --shift) {
val *= 10;
val += (number[i-shift] - '0');
};
if (val % (1UL << look) == 0)
return true;
};
return false;
}
int main(int argc, char** argv) {
std::string val;
std::cin >> val;
if (ExistsDigit(val, 3) /* since 8 = 2**3 = (1 << 3) */)
std::cout << "have found a decimal subword divisible by 8" << std::endl;
else
std::cout << "have not found any decimal subword divisible by 8" << std::endl;
return 0;
}
如果您可能在数字的二进制形式中找到连续位的子字,则需要将数字转换为大整数,然后进行类似的搜索。
这是一个(经过最小测试的)解决方案,无需调用像gmp这样的外部库来转换大整数的文本。此解决方案使用按位运算(<<
,&
)。
#include <iostream>
#include <string>
#include <vector>
int
ExistDigit(const std::string & currentNumber, int look) { // look1 = 2^look
std::vector<unsigned> bigNumber;
int length = currentNumber.size();
for (int i = 0; i < length; ++i) {
unsigned carry = currentNumber[i] - '0';
// bigNumber = bigNumber * 10 + carry;
for (int index = 0; index < bigNumber.size(); ++index) {
unsigned lowPart = bigNumber[index] & ~(~0U << (sizeof(unsigned)*4));
unsigned highPart = bigNumber[index] >> (sizeof(unsigned)*4);
lowPart *= 10;
lowPart += carry;
carry = lowPart >> (sizeof(unsigned)*4);
lowPart &= ~(~0U << (sizeof(unsigned)*4));
highPart *= 10;
highPart += carry;
carry = highPart >> (sizeof(unsigned)*4);
highPart &= ~(~0U << (sizeof(unsigned)*4));
bigNumber[index] = lowPart | (highPart << (sizeof(unsigned)*4));
}
if (carry)
bigNumber.push_back(carry);
};
// here bigNumber should be a biginteger = currentNumber
for (int i = 0; i < bigNumber.size()*8*sizeof(unsigned); ++i) {
// looks for look consective bits set to '0'
bool hasFound = true;
for (int shift = 0; hasFound && shift < look; ++shift)
if (bigNumber[(i+shift) / (8*sizeof(unsigned))]
& (1U << ((i+shift) % (8*sizeof(unsigned)))) != 0)
hasFound = false;
if (hasFound) { // ok, bigNumber has look consecutive bits set to 0
// test if we are at the end of the bigNumber
int index = (i+look) / (8*sizeof(unsigned));
for (int j = ((i+look+8*sizeof(unsigned)-1) % (8*sizeof(unsigned)))+1;
j < (8*sizeof(unsigned)); j++)
if ((bigNumber[index] & (1U << j)) != 0)
return i; // the result is (currentNumber / (2^i));
while (++index < bigNumber.size())
if (bigNumber[index] != 0)
return i; // the result is (currentNumber / (2^i));
return -1;
};
};
return -1;
}
int main(int argc, char** argv) {
std::string val;
std::cin >> val;
std::cout << val << " is divided by 8 after " << ExistDigit(val, 3) << " bits." << std::endl;
return 0;
}