我的表值如......
Date Amt Cash Money Name
15-Jun 100 10 20 GUL
16-Jun 200 20 40 ABC
20-Jun 300 30 60 GUL
25-Jun 400 40 80 BCA
28-Jun 500 50 10 GUL
3-Jul 600 60 120 ABC
19-Jun 700 70 140 BCA
26-Jun 800 80 160 ABC
7-Jul 900 90 180 GUL
9-Jul 1000 100 200 ABC
我需要每周返回oracle中两个日期之间的值之和。我的预期输出。
Date Amt Cash Mony
13 to 19 June 1000 100 200
20 to 26 June 1500 150 300
27 to3 July 1100 110 130
4 to 10 July 1900 190 380
答案 0 :(得分:1)
您可以通过案例陈述来实现这一目标:
e.g。
-- test data
with data(dat,
val1,
val2) as
(select sysdate - 7, 12, 13
from dual
union all
select sysdate - 6, 32, 1
from dual
union all
select sysdate - 5, 52, 53
from dual
union all
select sysdate - 4, 2, 16
from dual
union all
select sysdate - 3, 72, 154
from dual)
select -- build up your groups
case
when d.dat < to_date('28.09.2016', 'DD.MM.YYYY') then
'<28.09.'
when d.dat > to_date('30.09.2016', 'DD.MM.YYYY') then
'>30.09.'
else
'28.-30.'
end as grp,
sum(val1),
sum(val2)
from data d
group by case
when d.dat < to_date('28.09.2016', 'DD.MM.YYYY') then
'<28.09.'
when d.dat > to_date('30.09.2016', 'DD.MM.YYYY') then
'>30.09.'
else
'28.-30.'
end;
-- output
grp sum(val1) sum(val2)
28.-30. 84 54
<28.09. 12 13
>30.09. 74 170
按日历周分组使用
-- test data
with data(dat,
val1,
val2) as
(select sysdate - 9, 12, 13
from dual
union all
select sysdate - 6, 32, 1
from dual
union all
select sysdate - 5, 52, 53
from dual
union all
select sysdate - 4, 2, 16
from dual
union all
select sysdate + 3, 72, 154
from dual)
select TRUNC(dat, 'iw') ||'-'|| TRUNC(dat+7, 'iw'),
sum(val1),
sum(val2)
from data
group by TRUNC(dat, 'iw') ||'-'|| TRUNC(dat+7, 'iw');
答案 1 :(得分:0)
您可以尝试如下,我选择2016年6月13日作为开始日期。您可以根据您的要求选择任何日期范围。
with t as
(select dt,
min(dt) over (partition by week)||' to '|| max(dt) over (partition by week) week
from (
select to_date('13-Jun-2016','dd-Mon-yyyy')+(level-1) dt,
ceil(level/7) week
from dual
connect by level<=52))
select week,
sum(amt),
sum(cash),
sum(money)
from (
select your_table.*,
t.week
from your_table,t
where trunc(to_date(your_table.dt,'dd-Mon-yyyy'))=trunc(t.dt))
group by week;
答案 2 :(得分:0)
下面的查询在第一个因子子查询中有输入日期(从和到)。这些可以被制作为绑定变量,或者您想要用于将这些输入传递给查询的任何机制。然后我在第二个因子子查询中得到测试数据;你不需要在最终的解决方案中。我在&#34;周&#34;中创造了所需的所有周。因子子查询和我使用左外连接,因此没有交易的周将显示0总和。请注意,在主查询中,我在哪里进行连接,&#34; date&#34;基表中的列未包含在任何类型的函数中;这允许在该列上使用索引,如果表非常大,或者由于任何其他原因可能需要考虑性能,则应该使用该索引。请注意,输出与您的输出不同(缺少最后一行),因为我在表的最后一行之前输入了to-date
。这是故意的,我想确保查询正常工作。另外:我没有使用&#34; date&#34;或者&#34;周&#34;作为列名;这是一个非常糟糕的做法。保留的Oracle关键字不应用作列名。我用了#34; dt&#34;和&#34; wk&#34;代替。
with
user_inputs ( from_dt, to_dt ) as (
select to_date('4-Jun-2016', 'dd-Mon-yyyy'), to_date('3-Jul-2016', 'dd-Mon-yyyy') from dual
),
test_data ( dt, amt, cash, money, name ) as (
select to_date('15-Jun-2016', 'dd-Mon-yyyy'), 100, 10, 20, 'GUL' from dual union all
select to_date('16-Jun-2016', 'dd-Mon-yyyy'), 200, 20, 40, 'ABC' from dual union all
select to_date('20-Jun-2016', 'dd-Mon-yyyy'), 300, 30, 60, 'GUL' from dual union all
select to_date('25-Jun-2016', 'dd-Mon-yyyy'), 400, 40, 80, 'BCA' from dual union all
select to_date('28-Jun-2016', 'dd-Mon-yyyy'), 500, 50, 10, 'GUL' from dual union all
select to_date( '3-Jul-2016', 'dd-Mon-yyyy'), 600, 60, 120, 'ABC' from dual union all
select to_date('19-Jun-2016', 'dd-Mon-yyyy'), 700, 70, 140, 'BCA' from dual union all
select to_date('26-Jun-2016', 'dd-Mon-yyyy'), 800, 80, 160, 'ABC' from dual union all
select to_date( '7-Jul-2016', 'dd-Mon-yyyy'), 900, 90, 180, 'GUL' from dual union all
select to_date( '9-Jul-2016', 'dd-Mon-yyyy'), 1000, 100, 200, 'ABC' from dual
),
weeks ( start_dt ) as (
select trunc(from_dt, 'iw') + 7 * (level - 1)
from user_inputs
connect by level <= 1 + (to_dt - trunc(from_dt, 'iw')) / 7
)
select to_char(w.start_dt, 'dd-Mon-yyyy') || ' - ' ||
to_char(w.start_dt + 6, 'dd-Mon-yyyy') as wk,
nvl(sum(t.amt), 0) as tot_amt, nvl(sum(t.cash), 0) as tot_cash,
nvl(sum(t.money), 0) as tot_money
from weeks w left outer join test_data t
on t.dt >= w.start_dt and t.dt < w.start_dt + 7
group by start_dt
order by start_dt
;
<强>输出强>:
WK TOT_AMT TOT_CASH TOT_MONEY
-------------------------------------------- ---------- ---------- ----------
30-May-2016 - 05-Jun-2016 0 0 0
06-Jun-2016 - 12-Jun-2016 0 0 0
13-Jun-2016 - 19-Jun-2016 1000 100 200
20-Jun-2016 - 26-Jun-2016 1500 150 300
27-Jun-2016 - 03-Jul-2016 1100 110 130