如何在Tensorflow上的Cifar-10教程中测试自己的图像?

时间:2016-10-04 09:21:51

标签: python tensorflow

我训练了Tensorflow Cifar10模型,我想用自己的单张图片(32 * 32,jpg / png)来喂它。

我希望看到每个标签的标签和概率作为输出,但我对此有些麻烦..

搜索堆栈溢出后,我发现了一些this的帖子,我修改了cifar10_eval.py。

但它根本不起作用。

错误信息是:

  

InvalidArgumentErrorTraceback(最近一次调用最后一次)    in()   ----> 1评估()

     

在evaluate()中        86#从检查站恢复        87打印(" ckpt.model_checkpoint_path",ckpt.model_checkpoint_path)   ---> 88 saver.restore(sess,ckpt.model_checkpoint_path)        89#假设model_checkpoint_path看起来像:        90#/my-favorite-path/cifar10_train/model.ckpt-0,

     

/home/huray/anaconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/training/saver.pyc   在恢复(self,sess,save_path)1127加注   ValueError("使用无效的保存路径%s"%save_path调用还原)
  1128 sess.run(self.saver_def.restore_op_name,    - > 1129 {self.saver_def.filename_tensor_name:save_path})1130 1131 @staticmethod

     

/home/huray/anaconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/client/session.pyc   在运行中(self,fetches,feed_dict,options,run_metadata)       380尝试:       381 result = self._run(None,fetches,feed_dict,options_ptr,    - > 382 run_metadata_ptr)       383如果run_metadata:       384 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

     

/home/huray/anaconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/client/session.pyc   在_run中(self,handle,fetches,feed_dict,options,run_metadata)       653个movers = self._update_with_movers(feed_dict_string,feed_map)       654 results = self._do_run(handle,target_list,unique_fetches,    - > 655 feed_dict_string,options,run_metadata)       656       657#用户可能多次获取相同的张量,但我们

     

/home/huray/anaconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/client/session.pyc   在_do_run中(self,handle,target_list,fetch_list,feed_dict,options,   run_metadata)       721如果句柄为无:       722返回self._do_call(_ run_fn,self._session,feed_dict,fetch_list,    - > 723 target_list,options,run_metadata)       724其他:       725返回self._do_call(_prun_fn,self._session,handle,feed_dict,

     

/home/huray/anaconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/client/session.pyc   在_do_call中(self,fn,* args)       741除了KeyError:       742通过    - > 743引发类型(e)(node_def,op,message)       744       745 def _extend_graph(self):

     

InvalidArgumentError:Assign要求两个张量的形状匹配。   lhs shape = [18,384] rhs shape = [2304,384] [[节点:save / Assign_5 =   分配[T = DT_FLOAT,_class = [" loc:@ local3 / weights"],use_locking = true,   validate_shape = TRUE,   _device =" / job:localhost / replica:0 / task:0 / cpu:0"](local3 / weights,save / restore_slice_5)]]

对Cifar10的任何帮助都将不胜感激。

到目前为止,这是编译问题的实现代码:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from datetime import datetime
import math
import time

import numpy as np
import tensorflow as tf
import cifar10

FLAGS = tf.app.flags.FLAGS

tf.app.flags.DEFINE_string('eval_dir', '/tmp/cifar10_eval',
                           """Directory where to write event logs.""")
tf.app.flags.DEFINE_string('eval_data', 'test',
                           """Either 'test' or 'train_eval'.""")
tf.app.flags.DEFINE_string('checkpoint_dir', '/tmp/cifar10_train',
                           """Directory where to read model checkpoints.""")
tf.app.flags.DEFINE_integer('eval_interval_secs', 5,
                            """How often to run the eval.""")
tf.app.flags.DEFINE_integer('num_examples', 1,
                            """Number of examples to run.""")
tf.app.flags.DEFINE_boolean('run_once', False,
                         """Whether to run eval only once.""")

def eval_once(saver, summary_writer, top_k_op, summary_op):
  """Run Eval once.

  Args:
    saver: Saver.
    summary_writer: Summary writer.
    top_k_op: Top K op.
    summary_op: Summary op.
  """
  with tf.Session() as sess:
    ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
    if ckpt and ckpt.model_checkpoint_path:
      # Restores from checkpoint
      saver.restore(sess, ckpt.model_checkpoint_path)
      # Assuming model_checkpoint_path looks something like:
      #   /my-favorite-path/cifar10_train/model.ckpt-0,
      # extract global_step from it.
      global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
    else:
      print('No checkpoint file found')
      return
    print("Check point : %s" % ckpt.model_checkpoint_path)

    # Start the queue runners.
    coord = tf.train.Coordinator()
    try:
      threads = []
      for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS):
        threads.extend(qr.create_threads(sess, coord=coord, daemon=True,
                                         start=True))

      num_iter = int(math.ceil(FLAGS.num_examples / FLAGS.batch_size))
      true_count = 0  # Counts the number of correct predictions.
      total_sample_count = num_iter * FLAGS.batch_size
      step = 0
      while step < num_iter and not coord.should_stop():
        predictions = sess.run([top_k_op])
        true_count += np.sum(predictions)
        step += 1

      # Compute precision @ 1.
      precision = true_count / total_sample_count
      print('%s: precision @ 1 = %.3f' % (datetime.now(), precision))

      summary = tf.Summary()
      summary.ParseFromString(sess.run(summary_op))
      summary.value.add(tag='Precision @ 1', simple_value=precision)
      summary_writer.add_summary(summary, global_step)
    except Exception as e:  # pylint: disable=broad-except
      coord.request_stop(e)

    coord.request_stop()
    coord.join(threads, stop_grace_period_secs=10)


def evaluate():
  """Eval CIFAR-10 for a number of steps."""
  with tf.Graph().as_default() as g:
    # Get images and labels for CIFAR-10.
    eval_data = FLAGS.eval_data == 'test'
#     images, labels = cifar10.inputs(eval_data=eval_data)

    # TEST CODE
    img_path = "/TEST_IMAGEPATH/image.png"
    input_img = tf.image.decode_png(tf.read_file(img_path), channels=3)
    casted_image = tf.cast(input_img, tf.float32)

    reshaped_image = tf.image.resize_image_with_crop_or_pad(casted_image, 24, 24)
    float_image = tf.image.per_image_withening(reshaped_image)
    images = tf.expand_dims(reshaped_image, 0) 

    logits = cifar10.inference(images)
    _, top_k_pred = tf.nn.top_k(logits, k=1)


    with tf.Session() as sess:
        saver = tf.train.Saver()
        ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
        if ckpt and ckpt.model_checkpoint_path:
          print("ckpt.model_checkpoint_path ", ckpt.model_checkpoint_path)
          saver.restore(sess, ckpt.model_checkpoint_path)
          global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
        else:
          print('No checkpoint file found')
          return

        print("Check point : %s" % ckpt.model_checkpoint_path)
        top_indices = sess.run([top_k_pred])
        print ("Predicted ", top_indices[0], " for your input image.")

evaluate()

1 个答案:

答案 0 :(得分:2)

视频https://youtu.be/d9mSWqfo0Xw显示了对单个图片进行分类的示例。

在网络已经通过python cifar10_train.py训练之后,我们评估了CIFAR-10数据库的单个图像deer6.png和火柴盒的自己的照片。 TF教程原始源代码的最重要修改如下:

首先,有必要将这些图像转换为cifar10_input.py可以读取的二进制形式。使用可在How to create dataset similar to cifar-10

找到的代码段,可以轻松完成此操作

然后为了读取转换后的图像(称为input.bin),我们需要修改cifar10_input.py中的函数input():

  else:
    #filenames = [os.path.join(data_dir, 'test_batch.bin')]
    filenames = [os.path.join(data_dir, 'input.bin')]

(data_dir等于'./')

最后为了得到标签,我们修改了源cifar10_eval.py中的函数eval_once():

      #while step < num_iter and not coord.should_stop():
      #  predictions = sess.run([top_k_op])
      print(sess.run(logits[0]))
      classification = sess.run(tf.argmax(logits[0], 0))
      cifar10classes = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
      print(cifar10classes[classification])

      #true_count += np.sum(predictions)
      step += 1

      # Compute precision @ 1.
      precision = true_count / total_sample_count
      # print('%s: precision @ 1 = %.3f' % (datetime.now(), precision))

当然,您需要进行一些小修改。