您好我从RGUI-3.3.1安装DMwR软件包时收到此错误消息。
Error in read.dcf(file.path(pkgname, "DESCRIPTION"), c("Package", "Type")) :
cannot open the connection
In addition: Warning messages:
1: In unzip(zipname, exdir = dest) : error 1 in extracting from zip file
2: In read.dcf(file.path(pkgname, "DESCRIPTION"), c("Package", "Type")) :
cannot open compressed file 'bitops/DESCRIPTION', probable reason 'No such file or directory'
答案 0 :(得分:1)
方法1:
报告的错误无法打开连接。在Windows中often a firewall problem and is in the Windows R FAQ。通常的第一次尝试应该是运行internet2.dll。在控制台会话中,您可以使用:
setInternet2(TRUE)
NEWS for R version 3.3.1 Patched (2016-09-13 r71247) (仅限Windows)功能 setInternet2() 没有效果,将被删除到期 课程。方法之间的选择 “内部” 和 “WININET” 现在是由 方法 的论点 URL() 和 下载文件() 并且可以设置它们的默认值 通过 选项。开箱即用的默认设置仍然存在 “WININET” (从那时起一直如此 [R 3.2.2)
您使用的是版本3.3.1,这就是它不再工作的原因。
方法2
该错误表明该程序包需要另一个不可用的程序包bitops
。该包不在任何依赖项中,但也许其中一个依赖项依次需要它(在这种情况下,它是:ROCR)。
尝试安装:
install.packages("bitops",repos="https://cran.r-project.org/bin/windows/contrib/3.3/bitops_1.0-6.zip",dependencies=TRUE,type="source")
包DMwR包含abind,zoo,xts,quantmod和ROCR作为导入包。因此,除了安装5个软件包之外,还必须安装DMwR软件包,手动安装这些软件包。
按以下顺序安装包:
install.packages('abind')
install.packages('zoo')
install.packages('xts')
install.packages('quantmod')
install.packages('ROCR')
install.packages("DMwR")
library("DMwR")
<强> Approach 3 强>
chooseCRANmirror()
install.packages("bitops")
install.packages("DMwR")
答案 1 :(得分:1)
“DMwR”包已从 CRAN 存储库中删除。 以前可用的版本可以从 archive 获得。
https://CRAN.R-project.org/package=DMwR
您可以使用 CRAN 包中编写的函数。将以下代码复制到新的 RScript 中,运行它并保存以备将来使用。运行此函数后,您应该可以使用您一直尝试使用它的方式。
# ===================================================
# Creating a SMOTE training sample for classification problems
#
# If called with learner=NULL (the default) is does not
# learn any model, simply returning the SMOTEd data set
#
# NOTE: It does not handle NAs!
#
# Examples:
# ms <- SMOTE(Species ~ .,iris,'setosa',perc.under=400,perc.over=300,
# learner='svm',gamma=0.001,cost=100)
# newds <- SMOTE(Species ~ .,iris,'setosa',perc.under=300,k=3,perc.over=400)
#
# L. Torgo, Feb 2010
# ---------------------------------------------------
SMOTE <- function(form,data,
perc.over=200,k=5,
perc.under=200,
learner=NULL,...
)
# INPUTS:
# form a model formula
# data the original training set (with the unbalanced distribution)
# minCl the minority class label
# per.over/100 is the number of new cases (smoted cases) generated
# for each rare case. If perc.over < 100 a single case
# is generated uniquely for a randomly selected perc.over
# of the rare cases
# k is the number of neighbours to consider as the pool from where
# the new examples are generated
# perc.under/100 is the number of "normal" cases that are randomly
# selected for each smoted case
# learner the learning system to use.
# ... any learning parameters to pass to learner
{
# the column where the target variable is
tgt <- which(names(data) == as.character(form[[2]]))
minCl <- levels(data[,tgt])[which.min(table(data[,tgt]))]
# get the cases of the minority class
minExs <- which(data[,tgt] == minCl)
# generate synthetic cases from these minExs
if (tgt < ncol(data)) {
cols <- 1:ncol(data)
cols[c(tgt,ncol(data))] <- cols[c(ncol(data),tgt)]
data <- data[,cols]
}
newExs <- smote.exs(data[minExs,],ncol(data),perc.over,k)
if (tgt < ncol(data)) {
newExs <- newExs[,cols]
data <- data[,cols]
}
# get the undersample of the "majority class" examples
selMaj <- sample((1:NROW(data))[-minExs],
as.integer((perc.under/100)*nrow(newExs)),
replace=T)
# the final data set (the undersample+the rare cases+the smoted exs)
newdataset <- rbind(data[selMaj,],data[minExs,],newExs)
# learn a model if required
if (is.null(learner)) return(newdataset)
else do.call(learner,list(form,newdataset,...))
}
# ===================================================
# Obtain a set of smoted examples for a set of rare cases.
# L. Torgo, Feb 2010
# ---------------------------------------------------
smote.exs <- function(data,tgt,N,k)
# INPUTS:
# data are the rare cases (the minority "class" cases)
# tgt is the name of the target variable
# N is the percentage of over-sampling to carry out;
# and k is the number of nearest neighours to use for the generation
# OUTPUTS:
# The result of the function is a (N/100)*T set of generated
# examples with rare values on the target
{
nomatr <- c()
T <- matrix(nrow=dim(data)[1],ncol=dim(data)[2]-1)
for(col in seq.int(dim(T)[2]))
if (class(data[,col]) %in% c('factor','character')) {
T[,col] <- as.integer(data[,col])
nomatr <- c(nomatr,col)
} else T[,col] <- data[,col]
if (N < 100) { # only a percentage of the T cases will be SMOTEd
nT <- NROW(T)
idx <- sample(1:nT,as.integer((N/100)*nT))
T <- T[idx,]
N <- 100
}
p <- dim(T)[2]
nT <- dim(T)[1]
ranges <- apply(T,2,max)-apply(T,2,min)
nexs <- as.integer(N/100) # this is the number of artificial exs generated
# for each member of T
new <- matrix(nrow=nexs*nT,ncol=p) # the new cases
for(i in 1:nT) {
# the k NNs of case T[i,]
xd <- scale(T,T[i,],ranges)
for(a in nomatr) xd[,a] <- xd[,a]==0
dd <- drop(xd^2 %*% rep(1, ncol(xd)))
kNNs <- order(dd)[2:(k+1)]
for(n in 1:nexs) {
# select randomly one of the k NNs
neig <- sample(1:k,1)
ex <- vector(length=ncol(T))
# the attribute values of the generated case
difs <- T[kNNs[neig],]-T[i,]
new[(i-1)*nexs+n,] <- T[i,]+runif(1)*difs
for(a in nomatr)
new[(i-1)*nexs+n,a] <- c(T[kNNs[neig],a],T[i,a])[1+round(runif(1),0)]
}
}
newCases <- data.frame(new)
for(a in nomatr)
newCases[,a] <- factor(newCases[,a],levels=1:nlevels(data[,a]),labels=levels(data[,a]))
newCases[,tgt] <- factor(rep(data[1,tgt],nrow(newCases)),levels=levels(data[,tgt]))
colnames(newCases) <- colnames(data)
newCases
}
答案 2 :(得分:0)
原因是软件包“ DMwR ”是在R版本3.4.3下构建的。
因此,该解决方案实际上在标记的答案中进行了详细说明。
因此,简而言之:
只需运行以下脚本即可解决问题!
install.packages('abind')
install.packages('zoo')
install.packages('xts')
install.packages('quantmod')
install.packages('ROCR')
install.packages("DMwR")
library("DMwR")
答案 3 :(得分:-1)
我解决了它手动安装包的问题。
1° 我下载了“DMwR_0.4.1.tar.gz”。 2° 在 R Studio 中,我通过以下命令安装: install.packages("C:/path_example/DMwR_0.4.1.tar.gz", repos=NULL, type="source")
来自巴西的问候。