抱怨这条线:
log_centers = pca.inverse_transform(centers)
代码:
# TODO: Apply your clustering algorithm of choice to the reduced data
clusterer = KMeans(n_clusters=2, random_state=0).fit(reduced_data)
# TODO: Predict the cluster for each data point
preds = clusterer.predict(reduced_data)
# TODO: Find the cluster centers
centers = clusterer.cluster_centers_
log_centers = pca.inverse_transform(centers)
数据:
log_data = np.log(data)
good_data = log_data.drop(log_data.index[outliers]).reset_index(drop = True)
pca = PCA(n_components=2)
pca = pca.fit(good_data)
reduced_data = pca.transform(good_data)
reduced_data = pd.DataFrame(reduced_data, columns = ['Dimension 1', 'Dimension 2'])
数据是csv;标题看起来像:
Fresh Milk Grocery Frozen Detergents_Paper Delicatessen
0 14755 899 1382 1765 56 749
1 1838 6380 2824 1218 1216 295
2 22096 3575 7041 11422 343 2564
答案 0 :(得分:0)
问题在于pca.inverse_transform()
不应将clusters
作为参数。
事实上,如果你看一下documentation,它应该从PCA 获取的数据应用于原始数据和不< / strong>使用KMeans获得的质心。