我正在尝试使用OpenCv和Kmeans对图像进行分段,我刚刚实现的代码如下:
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
using namespace std;
using namespace cv;
int main(int, char** argv)
{
Mat src, Imagen2, Imagris, labels, centers,imgfondo;
src = imread("C:/Users/Sebastian/Documents/Visual Studio 2015/Projects/ClusteringImage/data/leon.jpg");
imgfondo = imread("C:/Users/Sebastian/Documents/Visual Studio 2015/Projects/ClusteringImage/data/goku640.jpg");
if (src.empty()|| imgfondo.empty())
{
printf("Error al cargar imagenes");
waitKey();
return -1;
}
Mat samples(src.rows * src.cols, 3, CV_32F);
for (int y = 0; y < src.rows; y++)
for (int x = 0; x < src.cols; x++)
for (int z = 0; z < 3; z++)
samples.at<float>(y + x*src.rows, z) = src.at<Vec3b>(y, x)[z];
//KMEANS_USE_INITIAL_LABELS
kmeans(samples, 2, labels, TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 1.0), 3, KMEANS_USE_INITIAL_LABELS, centers);
Mat new_image(src.size(), src.type());
int cluster;
if (centers.at<float>(0, 1) > centers.at<float>(1, 1)) cluster = 0;
else cluster = 1;
for (int y = 0; y < src.rows; y++)
for (int x = 0; x < src.cols; x++)
{
int cluster_idx = labels.at<int>(y + x*src.rows, 0);
if (cluster_idx == cluster)
{
new_image.at<Vec3b>(y, x)[0] = imgfondo.at<Vec3b>(y, x)[0];
new_image.at<Vec3b>(y, x)[1] = imgfondo.at<Vec3b>(y, x)[1];
new_image.at<Vec3b>(y, x)[2] = imgfondo.at<Vec3b>(y, x)[2];
}
else
{
new_image.at<Vec3b>(y, x)[0] = src.at<Vec3b>(y, x)[0];
new_image.at<Vec3b>(y, x)[1] = src.at<Vec3b>(y, x)[1];
new_image.at<Vec3b>(y, x)[2] = src.at<Vec3b>(y, x)[2];
}
}
imshow("Original image", src);
imshow("clustered image", new_image);
waitKey();
}
它工作得很好,它做我想要的,但我想设置我自己的初始中心值。我已经读过它可以使用标志&#34; KMEANS_USE_INITIAL_LABELS&#34;但我不太确定如何使用它,以及如何以及在何处设置初始值。 感谢。
答案 0 :(得分:4)
该功能允许您直接设置初始标签,而不是中心。幸运的是,自k-means alternates between assignment and update steps以来,您可以间接获得所需的效果。
来自the docs:
标签 - 输入/输出整数数组,用于存储每个样本的聚类索引。
KMEANS_USE_INITIAL_LABELS 在第一次(可能是唯一的)尝试期间,使用用户提供的标签,而不是从初始中心计算它们。对于第二次和进一步的尝试,使用随机或半随机中心。使用KMEANS _ * _ CENTERS标志之一指定确切的方法。
所以,文档说的是你可以设置初始标签。如果你想在你的代码中执行此操作
kmeans(samples, 2, labels, TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 1.0), 3, KMEANS_USE_INITIAL_LABELS, centers);
将第3个参数初始化为输入标签(用于第一次迭代)。
如果您想获得设置初始中心的效果,可以执行以下操作:
决定中心是什么。
像the assignment step中的算法一样计算标签。
将生成的标签传递给函数。