我有一个包含近4,000个观测值的数据集,其中包含9个不同的组。所以我有以下变量
群组: 1,2,3,....,9
性别:男,女
体重:每个人的体重
我想要做的是为每组制作一对箱形图(男性,女性)。所以在这种情况下我将有18个箱图。
如果不为每个boxplot(subset()
或which()
)函数创建一个子集数据,我该怎么做呢。
除此之外我对这些数据有一些问题,有一些没有重量的观察,细胞是空的或.
点。
这是一个虚构的样本,有3组,其中性别= 1表示女性,2表示男性。
Group Sex Weight
1 1 140
1 2
1 2 160
1 1 154
1 1 127
2 2 182
2 2 192
2 1 .
2 1 147
2 1 129
3 1 124
3 2 182
3 1 .
3 2 141
3 1 148
我从未使用过这个dput()
函数,我不知道它是否正确
dput(data)
structure(list(Group = c(1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 3L, 3L, 3L, 3L, 3L), Sex = c(1L, 2L, 2L, 1L, 1L, 2L, 2L,
1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L), Weight = structure(c(6L, 1L,
11L, 10L, 4L, 12L, 13L, 2L, 8L, 5L, 3L, 12L, 2L, 7L, 9L), .Label = c("",
".", "124", "127", "129", "140", "141", "147", "148", "154",
"160", "182", "192"), class = "factor")), .Names = c("Group",
"Sex", "Weight"), class = "data.frame", row.names = c(NA, -15L
))
答案 0 :(得分:3)
使用正确的类(数字,因子)分配到数据列,您可以这样做:
library(ggplot2)
DF = structure(list(Group = c(1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 3L, 3L, 3L, 3L, 3L), Sex = c(1L, 2L, 2L, 1L, 1L, 2L, 2L,
1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L), Weight = structure(c(6L, 1L,
11L, 10L, 4L, 12L, 13L, 2L, 8L, 5L, 3L, 12L, 2L, 7L, 9L), .Label = c("",
".", "124", "127", "129", "140", "141", "147", "148", "154",
"160", "182", "192"), class = "factor")), .Names = c("Group",
"Sex", "Weight"), class = "data.frame", row.names = c(NA, -15L
))
str(DF)
#'data.frame': 15 obs. of 3 variables:
# $ Group : int 1 1 1 1 1 2 2 2 2 2 ...
# $ Sex : int 1 2 2 1 1 2 2 1 1 1 ...
# $ Weight: Factor w/ 13 levels "",".","124","127",..: 6 1 11 10 4 12 13 2 8 5 ...
#The Weight column is currently of class factor that needs to converted to
#class numeric by first converting to character class and replacing "." by ""
DF$Weight = as.numeric(gsub("[.]","",as.character(DF$Weight)))
#Sex variable should be converted to factor,
#If 1 is considered as FeMale and 2 as Male
DF$Sex = ifelse(DF$Sex==1,"FeMale","Male")
DF$Sex <- as.factor(DF$Sex)
gg <- ggplot(DF, aes(x=Sex, y=Weight)) +
geom_boxplot() + facet_wrap(~Group) + ggtitle("Weight vs Sex for various Groups") +
theme(plot.title = element_text(size=14, face="bold"))
gg