我有5个改组的键值rdds,一个大的(1,000,000条记录)和4个相对较小的(100,000条记录)。所有的rdds都是shullfed,具有相同数量的分区,我有两个策略来合并5个,
我认为策略2会更有效率,因为不会重新洗牌那么重要。但实验结果表明策略1 更有效。代码和输出如下:
代码
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkContext, SparkConf}
object MergeStrategy extends App {
Logger.getLogger("org").setLevel(Level.ERROR)
Logger.getLogger("akka").setLevel(Level.ERROR)
val conf = new SparkConf().setMaster("local[4]").setAppName("test")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val bigRddSize = 1e6.toInt
val smallRddSize = 1e5.toInt
println(bigRddSize)
val bigRdd = sc.parallelize((0 until bigRddSize)
.map(x => (scala.util.Random.nextInt, 0))).repartition(100).cache
bigRdd.take(10).foreach(println)
val smallRddList = (0 until 4).map(i => {
val rst = sc.parallelize((0 until smallRddSize)
.map(x => (scala.util.Random.nextInt, 0))).repartition(100).cache
println(rst.count)
rst
}).toArray
// strategy 1
{
val begin = System.currentTimeMillis
val s1Rst = sc.union(Array(bigRdd) ++ smallRddList).distinct(100)
println(s1Rst.count)
val end = System.currentTimeMillis
val timeCost = (end - begin) / 1000d
println("S1 time count: %.1f s".format(timeCost))
}
// strategy 2
{
val begin = System.currentTimeMillis
val smallMerged = sc.union(smallRddList).distinct(100).cache
println(smallMerged.count)
val s2Rst = bigRdd.fullOuterJoin(smallMerged).flatMap({ case (key, (left, right)) => {
if (left.isDefined && right.isDefined) Array((key, left.get), (key, right.get)).distinct
else if (left.isDefined) Array((key, left.get))
else if (right.isDefined) Array((key, right.get))
else throw new Exception("Cannot happen")
}
})
println(s2Rst.count)
val end = System.currentTimeMillis
val timeCost = (end - begin) / 1000d
println("S2 time count: %.1f s".format(timeCost))
}
}
输出
1000000
(688282474,0)
(-255073127,0)
(872746474,0)
(-792516900,0)
(417252803,0)
(-1514224305,0)
(1586932811,0)
(1400718248,0)
(939155130,0)
(1475156418,0)
100000
100000
100000
100000
1399777
S1 time count: 39.7 s
399984
1399894
S2 time count: 49.8 s
我对洗牌的rdd的理解是错的?任何人都可以给出一些建议吗? 谢谢!
答案 0 :(得分:0)
我找到了一种更有效地合并rdd的方法,请参阅以下两种合并策略:
import org.apache.log4j.{Level, Logger}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SQLContext
import org.apache.spark.{HashPartitioner, SparkContext, SparkConf}
import scala.collection.mutable.ArrayBuffer
object MergeStrategy extends App {
Logger.getLogger("org").setLevel(Level.ERROR)
Logger.getLogger("akka").setLevel(Level.ERROR)
val conf = new SparkConf().setMaster("local[4]").setAppName("test")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val rddCount = 20
val mergeCount = 5
val dataSize = 20000
val parts = 50
// generate data
scala.util.Random.setSeed(943343)
val testData = for (i <- 0 until rddCount)
yield sc.parallelize(scala.util.Random.shuffle((0 until dataSize).toList).map(x => (x, 0)))
.partitionBy(new HashPartitioner(parts))
.cache
testData.foreach(x => println(x.count))
// strategy 1: merge directly
{
val buff = ArrayBuffer[RDD[(Int, Int)]]()
val begin = System.currentTimeMillis
for (i <- 0 until rddCount) {
buff += testData(i)
if ((buff.size >= mergeCount || i == rddCount - 1) && buff.size > 1) {
val merged = sc.union(buff).distinct
.partitionBy(new HashPartitioner(parts)).cache
println(merged.count)
buff.foreach(_.unpersist(false))
buff.clear
buff += merged
}
}
val end = System.currentTimeMillis
val timeCost = (end - begin) / 1000d
println("Strategy 1 Time Cost: %.1f".format(timeCost))
assert(buff.size == 1)
println("Strategy 1 Complete, with merged Count %s".format(buff(0).count))
}
// strategy 2: merge directly without repartition
{
val buff = ArrayBuffer[RDD[(Int, Int)]]()
val begin = System.currentTimeMillis
for (i <- 0 until rddCount) {
buff += testData(i)
if ((buff.size >= mergeCount || i == rddCount - 1) && buff.size > 1) {
val merged = sc.union(buff).distinct(parts).cache
println(merged.count)
buff.foreach(_.unpersist(false))
buff.clear
buff += merged
}
}
val end = System.currentTimeMillis
val timeCost = (end - begin) / 1000d
println("Strategy 2 Time Cost: %.1f".format(timeCost))
assert(buff.size == 1)
println("Strategy 2 Complete, with merged Count %s".format(buff(0).count))
}
}
结果显示策略1(时间成本20.8秒)比策略2(时间成本34.3秒)更有效。我的电脑是Windows 8,CPU 4核2.0GHz,8GB内存。
唯一的区别是由HashPartitioner划分的策略,但策略2没有划分。因此,策略1产生ShuffledRDD,但战略1产生MapPartitionsRDD。我认为 RDD.distinct 函数比MapPartitionsRDD更有效地处理ShuflledRDD。