想要将信息用于实时Google地图(KML数据)中的电子表格。下面的代码处理它,但不如所需的快。它必须处理多达10个图层,其中有趣的(参数“限制”)图层(或所有图层)中有大约2000个地标,线位置和/或多边形位置。因此,kml(xml)数据的大小通常非常大。
问题1:如何(如果可能的话)如何实施缓存和/或其他解决方案来处理大约2Mb xml数据?
问题2:如何实现对代码进行流处理的改进,增加动态处理未知(预先)列数/行数的灵活性并降低执行时间?
/**
* Fetch a Google Map and write the data to the spreadsheet (URL and layer).
*
* @param {url} input the URL associated with the Google Map (should contain &forcekml=1).
* @param {restrict} input the Layer name you want to restrict the data to.
* @return a range of data depending on the info in the map
* @customfunction
*/
function IMPORTMAP( url, restrict ) {
/* One key only allow 100k
var cache = CacheService.getPublicCache();
var cached = cache.get( "google-maps-xml" );
var cached = cache.getAll('?'); //Unknown keys in advance that also may change from time to time.
if ( cached != null ) {
return cached;
}*/
var txt = UrlFetchApp.fetch( url ).getContentText();
var sheet = SpreadsheetApp.getActiveSheet();
var width = sheet.getMaxColumns();
var height = sheet.getMaxRows();
var xmlDoc = XmlService.parse( txt );
var root = xmlDoc.getRootElement();
var atom = XmlService.getNamespace( 'http://www.opengis.net/kml/2.2' );
var xml2csv = [[height],[10]];
var labels = [], label = '', counter = 0, o = 0;
var documents = root.getChildren( 'Document', atom );
for( var i = 0; i < documents.length; i++ ) {
var Folders = documents[i].getChildren( 'Folder', atom );
for( var j = 0; j < Folders.length && j <= height; j++ ) {
if( Folders[j].getChild( 'name', atom ).getValue() == restrict ) {
var Placemarks = Folders[j].getChildren( 'Placemark', atom );
for( var k = 0; k < Placemarks.length; k++ ) {
var nodes = Placemarks[k].getChildren();
for( var l = 0; l < nodes.length; l++ ) {
var data = nodes[l].getChildren();
if( data.length > 0 ) {
for( var m = 0; m < data.length && counter <= width; m++ ) {
if( data[m].getAttribute( 'name' ) != null ) {
if( labels[ data[m].getAttribute( 'name' ).getValue().trim() ] == null ) {
labels[ data[m].getAttribute( 'name' ).getValue().trim() ] = counter;
xml2csv[ 0 ][ counter++ ] = data[m].getAttribute( 'name' ).getValue().trim();
}
}
if( data[m].getChild( 'value', atom ) != null ) {
xml2csv[ k + 1 ][ labels[ data[m].getAttribute( 'name' ).getValue().trim() ] ] = data[m].getChild( 'value', atom ).getValue().trim();
} else {
o = labels[ data[m].getName().trim() ];
if( o == null ) {
labels[ data[m].getName().trim() ] = counter;
o = counter;
xml2csv[ 0 ][ counter++ ] = data[m].getName().trim();
}
if( xml2csv[ k + 1 ] == null ) {
xml2csv[ k + 1 ] = new Array( counter );
}
xml2csv[ k + 1 ][ labels[ data[m].getName().trim() ] ] = data[m].getValue().trim();
}
}
} else {
if( label == '' )
label = nodes[l].getName().trim();
o = labels[ nodes[l].getName().trim() ];
if( o == null ) {
labels[ nodes[l].getName().trim() ] = counter;
o = counter;
xml2csv[ 0 ][ counter++ ] = nodes[l].getName().trim();
}
if( xml2csv[ k + 1 ] == null ) {
xml2csv[ k + 1 ] = new Array( counter );
}
xml2csv[ k + 1 ][ o ] = nodes[l].getValue().trim();
}
}
}
}
}
}
//cache.putAll( xml2csv, 1500 ); // cache for 25 minutes
return xml2csv;
}
请注意,代码仅处理当前形式的特定kml数据,可能不适合更广泛的受众。