快速搜索许多字符串中的许多字典键

时间:2016-09-28 03:26:07

标签: string python-2.7 pandas dictionary text-extraction

我有一个独特的问题,我主要希望找到加快这段代码的方法。我有一组存储在数据框中的字符串,每个字符串中都有几个名字,我知道这一步之前的名字数量,如下所示:

print df

description                      num_people        people    
'Harry ran with sally'                2              []         
'Joe was swinging with sally'         2              []
'Lola Dances alone'                   1              []

我正在使用带有我希望在描述中找到的键的字典,如下所示:

my_dict={'Harry':'1283','Joe':'1828','Sally':'1298', 'Cupid':'1982'}

然后使用iterrows在每个字符串中搜索匹配项,如下所示:

for index, row in df.iterrows():
    row.people=[key for key in my_dict if re.findall(key,row.desciption)]

并且在运行时最终以

结束
print df

 description                      num_people        people    
'Harry ran with sally'                2              ['Harry','Sally']         
'Joe was swinging with sally'         2              ['Joe','Sally']
'Lola Dances alone'                   1              ['Lola']

我看到的问题是,这段代码完成工作仍然相当慢,而且我有大量的描述和1000个密钥。是否有更快的方式来执行此操作,例如可能使用找到的人数?

1 个答案:

答案 0 :(得分:2)

更快的解决方案:

#strip ' in start and end of text, create lists from words
splited = df.description.str.strip("'").str.split()
#filtering
df['people'] = splited.apply(lambda x: [i for i in x if i in my_dict.keys()])
print (df)
                     description  num_people          people
0         'Harry ran with Sally'           2  [Harry, Sally]
1  'Joe was swinging with Sally'           2    [Joe, Sally]
2            'Lola Dances alone'           1          [Lola]

<强>计时

#[30000 rows x 3 columns]
In [198]: %timeit (orig(my_dict, df))
1 loop, best of 3: 3.63 s per loop

In [199]: %timeit (new(my_dict, df1))
10 loops, best of 3: 78.2 ms per loop
    
df['people'] = [[],[],[]]
df = pd.concat([df]*10000).reset_index(drop=True)
df1 = df.copy()

my_dict={'Harry':'1283','Joe':'1828','Sally':'1298', 'Lola':'1982'}

def orig(my_dict, df):
    for index, row in df.iterrows():
        df.at[index, 'people']=[key for key in my_dict if re.findall(key,row.description)]
    return (df)


def new(my_dict, df):
    df.description = df.description.str.strip("'")
    splited = df.description.str.split()
    df.people = splited.apply(lambda x: [i for i in x if i in my_dict.keys()])
    return (df)


print (orig(my_dict, df))
print (new(my_dict, df1))