确定R中特定级别的变量的平均值

时间:2016-09-27 01:12:27

标签: r binning

我试图找到特定于我指定不同变量的级别的变量的平均值(平均值)。

到目前为止,我创建了一个新变量,其中包含与之关联的各种级别:

  • 级别1:值< = 0%,
  • 级别2:值< 1%,和
  • 第3级:值> = 1%。
pincome$income_growth <- ifelse(pincome$incomechng <= 0, "level 1",
                                ifelse(pincome$incomechng < 1,"level 2","level 3"))

现在我想确定与上述水平相关的另一个变量的平均值(例如1级的平均收入(收入增长小于0%)。

我希望这是有道理的,我对R来说非常新手并试图抓住它!

2 个答案:

答案 0 :(得分:0)

如果你想要基础R,请尝试by?by)。如果你开始做更复杂的事情,那么plyr / dplyr包非常惊人,如果你我会用大量的数据集来解决这个问题,并且不用考虑更多的初始学习曲线,data.table包也很棒。

reproducible example很棒。

E.g。

set.seed(1) # so your random numbers are the same as mine
pincome <- data.frame(incomechng = runif(20, min=-1, max=3))

# what you had was fine too; using ?cut is another way to do it
# have just put it in for demonstration purposes.
# though `cut` uses intervals like (a, b] or [a, b) whereas yours
#  are (-Inf, 0] (0, 1) [1, Inf) which is a little different.    
pincome$income_growth <- cut(pincome$incomechng,
                             breaks=c(-Inf, 0, 1, Inf),
                             labels=paste("level", 1:3))

现在我们可以取每组内的平均值。我已经展示了三种选择;我确定还有更多。

# base R ?by
by(pincome$incomechng, pincome$income_growth, mean)
# pincome$income_growth: level 1
# [1] -0.6848674
# ------------------------------------------
# pincome$income_growth: level 2
# [1] 0.4132334
# ------------------------------------------
# pincome$income_growth: level 3
# [1] 1.772039

# plyr (dplyr has pipe syntax you may prefer but is otherwise the same)
library(plyr)
ddply(pincome, .(income_growth), summarize, avgIncomeGrowth=mean(incomechng))
#   income_growth avgIncomeGrowth
# 1       level 1      -0.6848674
# 2       level 2       0.4132334
# 3       level 3       1.7720395

# data.table
library(data.table)
setDT(pincome)
pincome[, list(avgIncomeGrowth=mean(incomechng)), by=income_growth]
#    income_growth avgIncomeGrowth
# 1:       level 2       0.4132334
# 2:       level 3       1.7720395
# 3:       level 1      -0.6848674

答案 1 :(得分:0)

如果您想要一个整洁的解决方案:

library(tidyverse)
pincome %>%
 mutate(income_growth = case_when(incomechng <= 0 ~ "level 1",
                                  incomechng < 1 ~ "level 2",
                                  TRUE ~ "level 3")) %>%
 group_by(income_growth) %>%
 summarize(avgIncomeGrowth = mean(incomechng,na.rm=TRUE))