我从外汇市场获得了一个有价值的df,我试图在数据框中为df中的每一行输入RSI,相对强弱指数(10)。
df.head()
Out[3]:
Date Time Open High Low Close Volume OpenInt
0 2016-09-16 00:05:00 0.75183 0.75186 0.75160 0.75161 0 0
1 2016-09-16 00:10:00 0.75156 0.75156 0.75145 0.75149 0 0
2 2016-09-16 00:15:00 0.75156 0.75166 0.75152 0.75165 0 0
3 2016-09-16 00:20:00 0.75164 0.75165 0.75150 0.75156 0 0
4 2016-09-16 00:25:00 0.75156 0.75174 0.75153 0.75156 0 0
RSI是一个指示器,可以告诉您何时产品超卖或超买; RSI = 100-100 /(1 + RS)其中RS是给定时间帧中上行周期的平均增益/给定时间帧中下行周期的平均损失。就我而言,时间范围是10。
df.change = df.Open - df.Close # find out if there is a gain or a loss
df.gain = df.change [df.change > 0] #column of gain
df.loss = df.change [df.change < 0]# column of loss
df.again = df.gain.rolling(center=False,window=10) #find the average gain in the last 10 periods
df.aloss = df.loss.rolling(center=False,window=10) #find the average loss in the last 10 periods
现在是麻烦开始的地方;我需要获得RS:
df.rs = df.again/df.aloss
TypeErrorTraceback (most recent call last)
<ipython-input-13-2886bcd78f42> in <module>()
----> 1 df.rs = df.again/df.aloss
TypeError: unsupported operand type(s) for /: 'Rolling' and 'Rolling'
谢谢你的帮助, 克罗诺斯
修改
df.gain.head(6)
Out[31]:
0 0.00022
1 0.00007
3 0.00008
5 0.00002
7 0.00003
8 0.00002
df.loss.head(6)
Out[32]:
2 -0.00009
6 -0.00019
9 -0.00013
14 -0.00002
15 -0.00011
20 -0.00008
dtype: float64
答案 0 :(得分:2)
import $ from 'jquery';
答案 1 :(得分:0)
对于平均损益,开盘价无关紧要。 它必须始终以收盘价与先前烛棒的收盘价进行比较来计算。
def rsiFunc(prices, n=14):
deltas = np.diff(prices)
seed = deltas[:n+1]
up = seed[seed>=0].sum()/n
down = -seed[seed<0].sum()/n
rs = up/down
rsi = np.zeros_like(prices)
rsi[:n] = 100. - 100./(1.+rs)
for i in range(n, len(prices)):
delta = deltas[i-1] # cause the diff is 1 shorter
if delta>0:
upval = delta
downval = 0.
else:
upval = 0.
downval = -delta
up = (up*(n-1) + upval)/n
down = (down*(n-1) + downval)/n
rs = up/down
rsi[i] = 100. - 100./(1.+rs)
return rsi
我从https://github.com/mtamer/python-rsi/blob/master/Stock%20Screener/rsi.py拿走