有什么方法可以让我自己的火车在python中进行人脸识别?更具体地说,我希望将火车设置为AT& T Face数据库。我希望我的相机拍摄每个人20张图像(最多30张)并将其存储在每个人姓名的单独文件夹中。
import cv2, sys, numpy, os
size = 4
fn_haar = 'haarcascade_frontalface_default.xml'
fn_dir = 'att_faces'
fn_name = sys.argv[1]
path = os.path.join(fn_dir, fn_name)
if not os.path.isdir(path):
os.mkdir(path)
(im_width, im_height) = (112, 92)
haar_cascade = cv2.CascadeClassifier(fn_haar)
webcam = cv2.VideoCapture(0)
# The program loops until it has 20 images of the face.
count = 0
while count < 20:
(rval, im) = webcam.read()
im = cv2.flip(im, 1, 0)
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
mini = cv2.resize(gray, (gray.shape[1] / size, gray.shape[0] / size))
faces = haar_cascade.detectMultiScale(mini)
faces = sorted(faces, key=lambda x: x[3])
if faces:
face_i = faces[0]
(x, y, w, h) = [v * size for v in face_i]
face = gray[y:y + h, x:x + w]
face_resize = cv2.resize(face, (im_width, im_height))
pin=sorted([int(n[:n.find('.')]) for n in os.listdir(path)
if n[0]!='.' ]+[0])[-1] + 1
cv2.imwrite('%s/%s.png' % (path, pin), face_resize)
cv2.rectangle(im, (x, y), (x + w, y + h), (0, 255, 0), 3)
cv2.putText(im, fn_name, (x - 10, y - 10), cv2.FONT_HERSHEY_PLAIN,
1,(0, 255, 0))
count += 1
cv2.imshow('OpenCV', im)
key = cv2.waitKey(10)
if key == 27:
break
答案 0 :(得分:1)
为此,您只需要提供一个特定路径即可以排序的方式保存所有扩展名为(.png)或(.bmp)或(.jpg)的图像。
# train.py
import cv2, sys, numpy, os
size = 4
fn_haar = 'haarcascade_frontalface_default.xml'
fn_dir = 'face_data'
fn_name = sys.argv[0]
path = os.path.join(fn_dir, fn_name)
(im_width, im_height) = (112, 92)
haar_cascade = cv2.CascadeClassifier(fn_haar)
webcam = cv2.VideoCapture(0)
# Generate name for image file
pin=sorted([int(n[:n.find('.')]) for n in os.listdir(path)
if n[0]!='.' ]+[0])[-1] + 1
# Beginning message
print("\n\033[94mThe program will save 20 samples. \
Move your head around to increase while it runs.\033[0m\n")
# The program loops until it has 20 images of the face.
count = 0
pause = 0
count_max = 20
while count < count_max:
# Loop until the camera is working
rval = False
while(not rval):
# Put the image from the webcam into 'frame'
(rval, frame) = webcam.read()
if(not rval):
print("Failed to open webcam. Trying again...")
# Get image size
height, width, channels = frame.shape
# Flip frame
frame = cv2.flip(frame, 1, 0)
# Convert to grayscale
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Scale down for speed
mini = cv2.resize(gray, (int(gray.shape[1] / size), int(gray.shape[0] / size)))
# Detect faces
faces = haar_cascade.detectMultiScale(mini)
# We only consider largest face
faces = sorted(faces, key=lambda x: x[3])
if faces:
face_i = faces[0]
(x, y, w, h) = [v * size for v in face_i]
face = gray[y:y + h, x:x + w]
face_resize = cv2.resize(face, (im_width, im_height))
# Draw rectangle and write name
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 3)
cv2.putText(frame, fn_name, (x - 10, y - 10), cv2.FONT_HERSHEY_PLAIN,
1,(0, 255, 0))
# Remove false positives
if(w * 6 < width or h * 6 < height):
print("Face too small")
else:
# To create diversity, only save every fith detected image
if(pause == 0):
print("Saving training sample "+str(count+1)+"/"+str(count_max))
# Save image file
cv2.imwrite('%s/%s.png' % (path, pin), face_resize)
pin += 1
count += 1
pause = 1
if(pause > 0):
pause = (pause + 1) % 5
cv2.imshow('OpenCV', frame)
key = cv2.waitKey(10)
if key == 27:
break
此代码将帮助您从网络摄像头获取裁剪后的图像,并将其存储在目录名称中作为face_data进行培训。 万一您不想从网络摄像头训练数据集,只需做一件事: 只是创建一个目录并在其中创建5-6个子目录,如Happy,Sad,Angry,Neutral,Calm等。 下载图像并将其放在相应的文件夹中以进行培训,现在请遵循以下代码。
## This program first ensures if the face of a person exists in the given image or
not then if it exists, it crops
## the image of the face and saves to the given directory.
## Importing Modules
import cv2
import os
directory = "C:\\Users\\hp"
## directory where the images to be saved:
f_directory = "C:\\Users\\hp\\face_data/"
def facecrop(image):
## Crops the face of a person from an image!
## OpenCV XML FILE for Frontal Facial Detection using HAAR CASCADES.
facedata=
"C:\\opencv\\build\\etc\\haarcascades\\haarcascade_frontalface_default.xml"
cascade = cv2.CascadeClassifier(facedata)
## Reading the given Image with OpenCV
img = cv2.imread(image)
try:
minisize = (img.shape[1],img.shape[0])
miniframe = cv2.resize(img, minisize)
faces = cascade.detectMultiScale(miniframe)
for f in faces:
x, y, w, h = [ v for v in f ]
cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,0), 2)
sub_face = img[y:y+h, x:x+w]
f_name = image.split('/')
f_name = f_name[-1]
## Change here the Desired directory.
cv2.imwrite(f_directory + f_name, sub_face)
print ("Writing: " + image)
except:
pass
if __name__ == '__main__':
images = os.listdir(directory)
i = 0
for img in images:
file = directory + img
print (i)
facecrop(file)
i += 1