我有一个加权图:
F=nx.path_graph(10)
G=nx.Graph()
for (u, v) in F.edges():
G.add_edge(u,v,weight=1)
获取节点列表:
[(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9)]
我想通过这条规则改变每条边的重量:
删除一个节点,例如节点5,边缘(4, 5)
和(5, 6)
将被删除,每条边的权重将转为:
{# these edges are nearby the deleted edge (4, 5) and (5, 6)
(3,4):'weight'=1.1,
(6,7):'weight'=1.1,
#these edges are nearby the edges above mentioned
(2,3):'weight'=1.2,
(7,8):'weight'=1.2,
#these edges are nearby the edges above mentioned
(1,2):'weight'=1.3,
(8,9):'weight'=1.3,
# this edge is nearby (1,2)
(0,1):'weight'=1.4}
如何编写此算法?
path_graph
只是一个例子。我需要一个适合任何图表类型的程序。此外,程序需要是可迭代的,这意味着我每次都可以从原始图中删除一个节点。
答案 0 :(得分:29)
您可以将边权重作为G [u] [v] ['weight']或通过迭代边数据来访问。所以你可以这样。
In [1]: import networkx as nx
In [2]: G=nx.DiGraph()
In [3]: G.add_edge(1,2,weight=10)
In [4]: G.add_edge(2,3,weight=20)
In [5]: G[2][3]['weight']
Out[5]: 20
In [6]: G[2][3]['weight']=200
In [7]: G[2][3]['weight']
Out[7]: 200
In [8]: G.edges(data=True)
Out[8]: [(1, 2, {'weight': 10}), (2, 3, {'weight': 200})]
In [9]: for u,v,d in G.edges(data=True):
...: d['weight']+=7
...:
...:
In [10]: G.edges(data=True)
Out[10]: [(1, 2, {'weight': 17}), (2, 3, {'weight': 207})]