我在C API中看到了以下两种声明opaque类型的样式。使用一种风格而不是另一种风格有明显的优势吗?
// foo.h
typedef struct foo * fooRef;
void doStuff(fooRef f);
// foo.c
struct foo {
int x;
int y;
};
// foo.h
typedef struct _foo foo;
void doStuff(foo *f);
// foo.c
struct _foo {
int x;
int y;
};
答案 0 :(得分:66)
我的投票是针对mouviciel发布的第三个选项,然后删除:
我见过第三种方式:
// foo.h struct foo; void doStuff(struct foo *f); // foo.c struct foo { int x; int y; };
如果你真的无法忍受输入struct
关键字,typedef struct foo foo;
(注意:摆脱无用且有问题的下划线)是可以接受的。但无论你做什么,从不使用typedef
来定义指针类型的名称。它隐藏了极其重要的信息,即这种类型的变量引用了一个对象,只要将它们传递给函数就可以修改它,并且它使得处理不同限定(例如,const
- 限定的)版本的指针是一个重大的痛苦。
答案 1 :(得分:1)
bar(const fooRef)
声明一个不可变的地址作为参数。 bar(const foo *)
声明一个不可变foo的地址作为参数。
出于这个原因,我倾向于选择选项2.即,所呈现的接口类型是可以在每个间接级别指定cv-ness的接口类型。当然,一个可以回避选项1库编写器并只使用foo
,当库编写器更改实现时,打开各种各样的恐怖。 (即,选项1库编写器只感知fooRef
是不变接口的一部分,foo
可以来,去,被改变等等。选项2库编写者认为{{1} }是不变界面的一部分。)
我更惊讶的是没有人建议组合typedef / struct结构
foo
答案 2 :(得分:0)
我习惯使用选项1 ,除非您用_h
命名引用以表示它是给定C的C样式“对象”的“句柄” “类”。然后,确保函数原型在此对象“句柄”的内容仅作为输入且不能更改的地方使用const
,并且在内容可以< / em>进行更改。
这是一个完整的例子:
const
除此之外,唯一的改进是:
//======================================================================================================================
// my_module.h
//======================================================================================================================
// An opaque pointer (handle) to a C-style "object" of "class" type "my_module" (struct my_module_s *, or my_module_h):
typedef struct my_module_s *my_module_h;
// Create a new "object" of "class" "my_module":
// A function that takes a *pointer to* an "object" handle, `malloc`s memory for a new copy of the opaque
// `struct my_module_s`, then points the user's input handle (via its passed-in pointer) to this newly-created
// "object" of "class" "my_module".
void my_module_open(my_module_h * my_module_h_p);
// A function that takes this "object" (via its handle) as an input only and cannot modify it
void my_module_do_stuff1(const my_module_h my_module);
// A function that can modify the private content of this "object" (via its handle) (but still cannot modify the
// handle itself)
void my_module_do_stuff2(my_module_h my_module);
// Destroy the passed-in "object" of "class" type "my_module":
// A function that can close this object by stopping all operations, as required, and `free`ing its memory.
// `struct my_module_s`, then points the user's input handle (via its passed-in pointer) to this newly-created "object".
void my_module_close(my_module_h my_module);
//======================================================================================================================
// my_module.c
//======================================================================================================================
// Definition of the opaque struct "object" of C-style "class" "my_module".
// - NB: Since this is an opaque struct (declared in the header but not defined until the source file), it has the
// following 2 important properties:
// 1) It permits data hiding, wherein you end up with the equivalent of a C++ "class" with only *private* member
// variables.
// 2) Objects of this "class" can only be dynamically allocated. No static allocation is possible since any module
// including the header file does not know the contents of *nor the size of* (this is the critical part) this "class"
// (ie: C struct).
struct my_module_s
{
int my_private_int1;
int my_private_int2;
float my_private_float;
// etc. etc--add more "private" member variables as you see fit
}
void my_module_open(my_module_h * my_module_h_p)
{
// Ensure the passed-in pointer is not NULL (since it is a core dump/segmentation fault to try to dereference
// a NULL pointer)
if (!my_module_h_p)
{
// Print some error or store some error code here, and return it at the end of the function instead of
// returning void.
goto done;
}
// Now allocate the actual memory for a new my_module C object from the heap, thereby dynamically creating this
// C-style "object".
my_module_h my_module; // Create a local object handle (pointer to a struct)
my_module = malloc(sizeof(*my_module)); // Dynamically allocate memory for the full contents of the struct "object"
if (!my_module)
{
// Malloc failed due to out-of-memory. Print some error or store some error code here, and return it
// at the end of the function instead of returning void.
goto done;
}
// Initialize all memory to zero (OR just use `calloc()` instead of `malloc()` above!)
memset(my_module, 0, sizeof(*my_module));
// Now pass out this object to the user, and exit.
*my_module_h_p = my_module;
done:
}
void my_module_do_stuff1(const my_module_h my_module)
{
// Ensure my_module is not a NULL pointer.
if (!my_module)
{
goto done;
}
// Do stuff where you use my_module private "member" variables.
// Ex: use `my_module->my_private_int1` here, or `my_module->my_private_float`, etc.
done:
}
void my_module_do_stuff2(my_module_h my_module)
{
// Ensure my_module is not a NULL pointer.
if (!my_module)
{
goto done;
}
// Do stuff where you use AND UPDATE my_module private "member" variables.
// Ex:
my_module->my_private_int1 = 7;
my_module->my_private_float = 3.14159;
// Etc.
done:
}
void my_module_close(my_module_h my_module)
{
// Ensure my_module is not a NULL pointer.
if (!my_module)
{
goto done;
}
free(my_module);
done:
}
。在.h文件中添加一个名为void
的配置结构,并将其传递给my_module_config_t
函数,以在创建新对象时更新内部变量。示例:
open