我正在使用以下程序处理大型libpacp文件。
我对字符串流可以从操作系统分配的内存的实际最大大小感到困惑。
代码的第一部分是处理libpacp文件的程序。
第二部分是测试程序。
环境: Windows 10,VS,符合Win32-Released(32位)模式。
第一部分:
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <ctime>
#include <cstdio>
#define HeaderBytes 24
#define MaxPkgBytes 65544 //65536+8
#define KeepDays 7
#define KeepSeconds (KeepDays*86400)
#define StartTimeOffset (-1*86400) // -1 day
using namespace std;
typedef struct{
int size;
char data[MaxPkgBytes];
}pkg;
int catoi(const char* ca){
char tmp[4];
int* iptr;
for (int i = 0; i < 4; i++){
tmp[i] = ca[3 - i];
}
iptr = reinterpret_cast<int*>(tmp);
return *iptr;
}
#ifdef _MSC_VER
#include <windows.h>
#include <iomanip>
wstring str2wstr(const std::string& s)
{
int len;
int slength = (int)s.length() + 1;
len = MultiByteToWideChar(CP_ACP, 0, s.c_str(), slength, 0, 0);
wchar_t* buf = new wchar_t[len];
MultiByteToWideChar(CP_ACP, 0, s.c_str(), slength, buf, len);
wstring wstr(buf);
return wstr;
}
#endif // _MSC_VER
int main(int argc, char** argv){
string inFileName, outFileName;
stringstream outBuf;
fstream fs_in, fs_out;
char buf_char;
int buf_int, headercount = 0, curPkgIdx= 0, lastPkgIdx = 1, tmp;
bool isBroken = false, isValid;
clock_t mytime;
unsigned int StartTime = 0, PkgTime;
pkg buf_pkg[2];
if (argc != 2){
return 1;
}
inFileName = argv[1];
fs_in.open(inFileName, ios::binary | ios::in);
if (!fs_in){
cout << "Can't open the file: " << inFileName << endl;
return 1;
}
outFileName = inFileName;
outFileName.insert(outFileName.rfind('.'), "_integrated");
fs_out.open(outFileName, ios::binary | ios::out);
if (!fs_out){
cout << "Can't open the file: " << outFileName << endl;
return 1;
}
int invalidPConuter = 0;
long long outBufMaxPos = 0;
buf_pkg[0].size = 0;
buf_pkg[1].size = 0;
mytime = clock();
fs_in.read(buf_pkg[curPkgIdx].data, HeaderBytes);
outBuf.write(buf_pkg[curPkgIdx].data, HeaderBytes);
if (fs_in){
fs_in.read(buf_pkg[curPkgIdx].data, 4);
StartTime = catoi(buf_pkg[curPkgIdx].data);
StartTime += StartTimeOffset;
fs_in.seekg(-4, ios_base::cur);
}
cout << "start" << endl;
while (fs_in.get(buf_char)){
fs_in.seekg(-1, ios_base::cur);
if (buf_char == -95 ){ //0xa1
fs_in.read(reinterpret_cast<char*>(&buf_int), sizeof(int));
if (buf_int == 0xd4c3b2a1){ //a1b2 c3d4
fs_in.seekg(HeaderBytes-4, ios_base::cur);
headercount++;
}
else fs_in.seekg(-4, ios_base::cur);
}
else{
fs_in.read(buf_pkg[curPkgIdx].data, 16);
PkgTime = catoi(buf_pkg[curPkgIdx].data);
/*Set isValid*/
if (PkgTime - StartTime < KeepSeconds) isValid = true;
else isValid = false;
if (isValid){ //last packetage is valid
/*store size of packetage*/
buf_pkg[curPkgIdx].size = catoi(buf_pkg[curPkgIdx].data + 8);
/*store size of packetage*/
if (buf_pkg[curPkgIdx].size > MaxPkgBytes) isValid = false;
}
if (isValid) //Pass packet size check
{
/*read packetage data*/
fs_in.read(buf_pkg[curPkgIdx].data + 16, buf_pkg[curPkgIdx].size);
buf_pkg[curPkgIdx].size += 16;
/*read packetage data*/
/*write last packetage data*/
outBuf.write(buf_pkg[lastPkgIdx].data, buf_pkg[lastPkgIdx].size);
if (static_cast<long long>(outBuf.tellp()) > outBufMaxPos)
{
outBufMaxPos = static_cast<long long>(outBuf.tellp());
}
else if (static_cast<long long>(outBuf.tellp()) == -1)
{
cout << "outBufMaxPos: " << outBufMaxPos << endl;
system("pause");
}
if (outBuf.tellp() >= 0x40000000 - MaxPkgBytes) // 1GB
{
cout << "write" << endl;
fs_out << outBuf.rdbuf();
outBuf.str("");
outBuf.clear();
}
/*write last packetage data*/
/*swap idx of buffer*/
tmp = curPkgIdx;
curPkgIdx = lastPkgIdx;
lastPkgIdx = tmp;
/*swap idx of buffer*/
}
if (!isValid)
{
++invalidPConuter;
isBroken = true;
fs_in.seekg(-buf_pkg[lastPkgIdx].size - 15, ios_base::cur);
/*search correct packetage byte by byte*/
int tmpflag = 0;
/*Let PkgTime be invalid.
If packet is invalid because of its size, original PkgTime was valid*/
PkgTime = StartTime + KeepSeconds;
while (PkgTime - StartTime >= KeepSeconds && fs_in.read(buf_pkg[curPkgIdx].data, 4)){
PkgTime = catoi(buf_pkg[curPkgIdx].data);
fs_in.seekg(-3, ios_base::cur);
}
fs_in.seekg(-1, ios_base::cur);
/*search correct packetage byte by byte*/
buf_pkg[lastPkgIdx].size = 0; //reset the size of the invalid packetage
}
}
}
fs_in.close();
mytime = clock() - mytime;
cout << "Repair pacp: " << mytime << " miniseconds." << endl;
cout << "Number of deleted headers: " << headercount << endl;
mytime = clock();
if (headercount || isBroken){
fs_out << outBuf.rdbuf();
fs_out.close();
#ifdef _MSC_VER
wstring originFileName, newFileName;
originFileName = str2wstr(inFileName);
newFileName = str2wstr(inFileName.insert(inFileName.rfind("."), "_origin"));
int flag = MoveFileExW(originFileName.c_str(), newFileName.c_str(), 0);
if (!flag)
{
cout << "fail to rename origin file" << endl;
cout << showbase // show the 0x prefix
<< internal // fill between the prefix and the number
<< setfill('0'); // fill with 0s
cout << "Error code: " << hex << setw(4) << GetLastError() << dec << endl;
}
else
{
newFileName = originFileName;
originFileName = str2wstr(outFileName);
flag = MoveFileExW(originFileName.c_str(), newFileName.c_str(), 0);
if (!flag)
{
cout << "fail to rename output file" << endl;
cout << showbase // show the 0x prefix
<< internal // fill between the prefix and the number
<< setfill('0'); // fill with 0s
cout << "Error code: " << hex << setw(4) << GetLastError() << dec << endl;
}
}
#endif //_MSC_VER
}
else
{
wstring tmpwstr = str2wstr(outFileName);
fs_out.close();
if (!DeleteFileW(tmpwstr.c_str()))
{
cout << "Cannot deleted tmp file (integrated)" << endl;
}
cout << "The file is completed. Do nothing." << endl;
}
mytime = clock() - mytime;
cout << "Rename file: " << mytime << " miniseconds." << endl;
system("pause");
return 0;
}
第一部分的伪代码:
using namespace std;
int main(int argc, char** argv){
//leave over the varibles
string inFileName, outFileName;
fstream fs_out;
char buf_char;
int buf_int, headercount = 0, curPkgIdx= 0, lastPkgIdx = 1, tmp;
bool isBroken = false, isValid;
clock_t mytime;
unsigned int StartTime = 0, PkgTime;
pkg buf_pkg[2];
int invalidPConuter = 0;
long long outBufMaxPos = 0;
//the varibles will be mentioned
fstream fs_in;
stringstream outBuf;
fs_in.read(Header);
outBuf.write(Header);
if (fs_in){
StartTime = first_packet_time + StartTimeOffset;
}
while (!fs_in.eof()){
if (a header read from fs_in){
skip the block of header
}
else{
fs_in.read(packet header);
if (time of packet isValid){
check size of packet
}
if (size and time isValid)
{
fs_in.read(packet data);
outBuf.write(packet data);
if(outBuf out of range)
{
print(max stringstream size)
system("pause");
}
if (outBuf size >= 1GB)
{
write outBuf into output file
}
}
if (size or time isNotValid)
{
find next valid packet byte by byte
}
}
}
fs_in.close();
system("pause");
return 0;
}
第二部分:
#include <iostream>
#include <typeinfo>
#include <sstream>
#include <string>
using namespace std;
#define testsize (80*1024*1024)
int main()
{
stringstream ss;
char* buf = new char[testsize];
int i = 0;
memset(buf, 'a', testsize);
while (i < 30)
{
ss.write(buf, testsize);
cout << ss.tellp()/1024/1024 << endl;
++i;
}
system("pause");
}
在第一部分中,stringstream的最大大小限制为大约674MB。
但在第二部分中,stringstream的最大大小限制在2GB左右。
为什么他们不同?
如何在不写入任何内容的情况下获得字符串流的实际最大大小?
我搜索了相关问题,但答案对我没有帮助。
答案 0 :(得分:1)
简短的回答是,除了尝试之外,你通常不会/不会知道。
操作系统有一个内存池。该池在系统上当前正在执行的所有进程之间共享(加上一些不完全属于进程的设备驱动程序,但这种区别目前并不重要)。
在典型情况下,池的总体大小未知且通常不可知。它可能会动态更改,因为(例如)磁盘已添加到系统中或从系统中删除。
系统上任何一个进程可用的池的百分比通常也是不可知的。其他进程正在启动和停止,通常分配和释放内存,并且许多进程在操作期间也分配和释放内存。
所有这一切都是动态发生的,因此分配的尝试可能会在一瞬间成功,在下一阶段失败,并在稍后再次成功。如果操作系统提供了(例如)一个函数来告诉你在调用它时有多少可用内存,那么结果在返回给调用者之前可能很容易出错。
有一些硬限制。对于一个明显的,32位进程只有4千兆字节的地址空间。尝试通过常规方法(例如,new
)分配(比如说)8千兆字节是不可能的。 -
大小为N的单个分配在该地址范围内需要一系列N个连续字节。特别是在进程运行一段时间后,可用的地址空间(独立于底层内存)将趋向于碎片化,因此无论可用内存如何,可以成功的最大单个分配将是最大片段的大小。可用的地址空间。
在某些情况下,还存在“软”限制。例如,在Windows 1 中,您可以创建“作业对象”,并指定在该作业对象中运行的进程使用的最大内存。即使物理RAM可用,这也可以防止分配成功。
因此,在任何特定时刻,可以成功的最大分配是六个(或左右)不同因素中的任何一个的最小值,几乎所有这些因素都对几乎不可预测的变化持开放态度。知道什么会起作用的唯一现实方法是尝试分配你需要的东西,看看是否成功。
<子> 这里我以Windows为例,因为问题涉及Windows。虽然机制和名称各不相同,但基本思想远非Windows独有;大多数其他操作系统提供类似的功能 子>
答案 1 :(得分:0)
除了你的stringstream
缓冲区之外,你的第一个程序可能还有其他东西存在于其内存空间中。当您的程序分配并释放内存块时,地址空间就会碎片化。你可能还有几千兆字节的地址空间,但是在任何可以容纳巨大缓冲区的地方都没有单一的,连续的间隙。您还会从str2wstr
泄漏内存。
在你的第二个程序中,这不是一个问题,因为你一次只分配两块内存。您的地址空间不会碎片化,因此您的stringstream
缓冲区几乎可以使用所有可用内存。