我有一个pandas数据框my_df,在那里我可以找到给定列的mean(),median(),mode():
my_df['field_A'].mean()
my_df['field_A'].median()
my_df['field_A'].mode()
我想知道是否有可能找到更详细的统计数据,如90%?谢谢!
答案 0 :(得分:31)
您可以使用pandas.DataFrame.quantile()功能,如下所示。
import pandas as pd
import random
A = [ random.randint(0,100) for i in range(10) ]
B = [ random.randint(0,100) for i in range(10) ]
df = pd.DataFrame({ 'field_A': A, 'field_B': B })
df
# field_A field_B
# 0 90 72
# 1 63 84
# 2 11 74
# 3 61 66
# 4 78 80
# 5 67 75
# 6 89 47
# 7 12 22
# 8 43 5
# 9 30 64
df.field_A.mean() # Same as df['field_A'].mean()
# 54.399999999999999
df.field_A.median()
# 62.0
# You can call `quantile(i)` to get the i'th quantile,
# where `i` should be a fractional number.
df.field_A.quantile(0.1) # 10th percentile
# 11.9
df.field_A.quantile(0.5) # same as median
# 62.0
df.field_A.quantile(0.9) # 90th percentile
# 89.10000000000001
答案 1 :(得分:7)
假设系列s
s = pd.Series(np.arange(100))
获取[.1, .2, .3, .4, .5, .6, .7, .8, .9]
s.quantile(np.linspace(.1, 1, 9, 0))
0.1 9.9
0.2 19.8
0.3 29.7
0.4 39.6
0.5 49.5
0.6 59.4
0.7 69.3
0.8 79.2
0.9 89.1
dtype: float64
OR
s.quantile(np.linspace(.1, 1, 9, 0), 'lower')
0.1 9
0.2 19
0.3 29
0.4 39
0.5 49
0.6 59
0.7 69
0.8 79
0.9 89
dtype: int32
答案 2 :(得分:5)
我发现下面会有效:
grep
答案 3 :(得分:0)
您甚至可以为多列提供空值并获得多个分位数(我将95%用于离群值处理)
<div class="masked-copy texture-orange big-type">
<p><span class="firstline">Coffee </span><span class="secondline">'N'</span> <span class="thirdline">Code!</span></p>
<!--
-->
<div class="explanation">
<div>
<h1 class="goo" contenteditable="true">Elected as a <i>Senior Project Lead</i> <br>at the Biggest Club<br> involved in Technology and Coding: <span id = 'newline'>Coffee</span> 'N' Code.</h1>
</div>
<!-- Filter: https://css-tricks.com/gooey-effect/ -->
<svg style="visibility: hidden; position: absolute;" width="0" height="0" xmlns="http://www.w3.org/2000/svg" version="1.1">
<defs>
<filter id="goo">
<feGaussianBlur in="SourceGraphic" stdDeviation="10" result="blur" />
<feColorMatrix in="blur" mode="matrix" values="1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 19 -9" result="goo" />
<feComposite in="SourceGraphic" in2="goo" operator="atop"/>
</filter>
</defs>
</svg>
</div>
</div>