我有一个xls文件,数据以长格式组织。我有四列:变量名称,国家/地区名称,年份和值。
使用pandas.read_excel在Python中导入数据后,我想绘制一个变量的时间序列,用于不同的国家/地区。为此,我创建了一个数据透视表,以宽格式转换数据。当我尝试用matplotlib绘图时,我收到错误
ValueError: could not convert string to float: 'ZAF'
(其中' ZAF'是一个国家/地区的标签)
问题是什么?
这是代码:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
data = pd.read_excel('raw_emissions_energy.xls','raw data', index_col = None, thousands='.',parse_cols="A,C,F,M")
data['Year'] = data['Year'].astype(str)
data['COU'] = data['COU'].astype(str)
# generate sub-datasets for specific VARs
data_CO2PROD = pd.pivot_table(data[(data['VAR']=='CO2_PBPROD')], index='COU', columns='Year')
plt.plot(data_CO2PROD)
包含原始数据的xls文件如下所示: raw data Excel view
这是我从data_CO2PROD.info()
获得的<class 'pandas.core.frame.DataFrame'>
Index: 105 entries, ARE to ZAF
Data columns (total 16 columns):
(Value, 1990) 104 non-null float64
(Value, 1995) 105 non-null float64
(Value, 2000) 105 non-null float64
(Value, 2001) 105 non-null float64
(Value, 2002) 105 non-null float64
(Value, 2003) 105 non-null float64
(Value, 2004) 105 non-null float64
(Value, 2005) 105 non-null float64
(Value, 2006) 105 non-null float64
(Value, 2007) 105 non-null float64
(Value, 2008) 105 non-null float64
(Value, 2009) 105 non-null float64
(Value, 2010) 105 non-null float64
(Value, 2011) 105 non-null float64
(Value, 2012) 105 non-null float64
(Value, 2013) 105 non-null float64
dtypes: float64(16)
memory usage: 13.9+ KB
None
答案 0 :(得分:1)
使用data_CO2PROD.plot()而不是plt.plot(data_CO2PROD)允许我绘制数据。 http://pandas.pydata.org/pandas-docs/stable/visualization.html。 简单的代码:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
data= pd.DataFrame(np.random.randn(3,4), columns=['VAR','COU','Year','VAL'])
data['VAR'] = ['CC','CC','KK']
data['COU'] =['ZAF','NL','DK']
data['Year']=['1987','1987','2006']
data['VAL'] = [32,33,35]
data['Year'] = data['Year'].astype(str)
data['COU'] = data['COU'].astype(str)
# generate sub-datasets for specific VARs
data_CO2PROD = pd.pivot_table(data=data[(data['VAR']=='CC')], index='COU', columns='Year')
data_CO2PROD.plot()
plt.show()
答案 1 :(得分:0)
我认为您需要将参数values
添加到pivot_table
:
data_CO2PROD = pd.pivot_table(data=data[(data['VAR']=='CC')],
index='COU',
columns='Year',
values='Value')
data_CO2PROD.plot()
plt.show()