我已将数据分组。现在,我要做的是从“高”中选择最高的'列并从“低”中选择最低值在每周的列中,然后使用最高到负的最低值来获得范围。但代码总是错误的。有人对我有想法吗?
这是我的DataFrame的一部分:
我的错误代码:
grouped=df.groupby('week')
def Range(x,y):
return x.max()-y.min()
grouped.agg(Range(grouped['high'],grouped['low']))
答案 0 :(得分:2)
这就是你想要的吗?
In [67]: df
Out[67]:
Open High Low Close Volume Adj Close Week
Date
2015-09-14 116.580002 116.889999 114.860001 115.309998 58363400 112.896168 2015-09-18
2015-09-15 115.930000 116.529999 114.419998 116.279999 43341200 113.845864 2015-09-18
2015-09-16 116.250000 116.540001 115.440002 116.410004 37173500 113.973148 2015-09-18
2015-09-17 115.660004 116.489998 113.720001 113.919998 64112600 111.535266 2015-09-18
2015-09-18 112.209999 114.300003 111.870003 113.449997 74285300 111.075104 2015-09-18
2015-09-21 113.669998 115.370003 113.660004 115.209999 50222000 112.798263 2015-09-25
2015-09-22 113.379997 114.180000 112.519997 113.400002 50346200 111.026155 2015-09-25
2015-09-23 113.629997 114.720001 113.300003 114.320000 35756700 111.926895 2015-09-25
2015-09-24 113.250000 115.500000 112.370003 115.000000 50219500 112.592660 2015-09-25
2015-09-25 116.440002 116.690002 114.019997 114.709999 56151900 112.308730 2015-09-25
In [68]: df.groupby('Week').apply(lambda x: x.High.max() - x.Low.min())
Out[68]:
Week
2015-09-18 5.019996
2015-09-25 4.319999
dtype: float64
设置DF:
In [75]: from pandas_datareader import data as web
In [76]: df = web.DataReader('aapl', 'yahoo', '2015-09-14', '2015-09-25')
In [77]: df.ix[:5, 'Week'] = df.index[df.index.weekday == 4][0]
In [78]: df.ix[5:, 'Week'] = df.index[df.index.weekday == 4][-1]
In [79]: df
Out[79]:
Open High Low Close Volume Adj Close Week
Date
2015-09-14 116.580002 116.889999 114.860001 115.309998 58363400 112.896168 2015-09-18
2015-09-15 115.930000 116.529999 114.419998 116.279999 43341200 113.845864 2015-09-18
2015-09-16 116.250000 116.540001 115.440002 116.410004 37173500 113.973148 2015-09-18
2015-09-17 115.660004 116.489998 113.720001 113.919998 64112600 111.535266 2015-09-18
2015-09-18 112.209999 114.300003 111.870003 113.449997 74285300 111.075104 2015-09-18
2015-09-21 113.669998 115.370003 113.660004 115.209999 50222000 112.798263 2015-09-25
2015-09-22 113.379997 114.180000 112.519997 113.400002 50346200 111.026155 2015-09-25
2015-09-23 113.629997 114.720001 113.300003 114.320000 35756700 111.926895 2015-09-25
2015-09-24 113.250000 115.500000 112.370003 115.000000 50219500 112.592660 2015-09-25
2015-09-25 116.440002 116.690002 114.019997 114.709999 56151900 112.308730 2015-09-25