数据框df_implied_full
有几列,其中一列名为'USDZARV1Y Curncy'
,只有floats
。
此代码有效:
mad = lambda x: np.median(np.fabs(x - np.median(x)))
df_implied_full['madtest'] = df_implied_full['USDZARV1Y Curncy'].rolling(window=60).apply(mad)
此代码无效:
test = lambda x: (x - np.median(x))
df_implied_full['rolltest2'] = df_implied_full['USDZARV1Y Curncy'].rolling(window=60).apply(test)
显示的错误是:
文件" pandas \ algos.pyx",第1831行,pandas.algos.roll_generic(pandas \ algos.c:51581)
TypeError:只能将length-1数组转换为Python标量
我使用Pandas 0.18.1和python 2.7.12
我的代码出了什么问题?
答案 0 :(得分:1)
x
中lambda x: (x ...
的问题输出为numpy array
,因此如果仅使用test = lambda x: x
numpy数组,则无法将每行转换为标量值。我认为你只需要返回标量值,例如使用x[0]
或np.median(x)
。最好的是使用自定义功能并测试它。
window=2
示例:
import pandas as pd
import numpy as np
df_implied_full = pd.DataFrame({'USDZARV1Y Curncy': [1.2,4.6,7.3,4.9,1.5]})
print (df_implied_full)
def test (x):
print (x)
#[ 1.2 4.6]
#[ 4.6 7.3]
#[ 7.3 4.9]
#[ 4.9 1.5]
print (type(x))
#<class 'numpy.ndarray'>
#<class 'numpy.ndarray'>
#<class 'numpy.ndarray'>
#<class 'numpy.ndarray'>
#Return only first value of list
return x[0]
mad = lambda x: np.median(np.fabs(x - np.median(x)))
df_implied_full['madtest'] = df_implied_full['USDZARV1Y Curncy'].rolling(window=2).apply(test)
print (df_implied_full)
USDZARV1Y Curncy madtest
0 1.2 NaN
1 4.6 1.2
2 7.3 4.6
3 4.9 7.3
4 1.5 4.9
def test (x):
def test (x):
print (x)
#[ 1.2 4.6]
#[ 4.6 7.3]
#[ 7.3 4.9]
#[ 4.9 1.5]
#Return median as scalar
return np.median(x)
mad = lambda x: np.median(np.fabs(x - np.median(x)))
df_implied_full['madtest'] = df_implied_full['USDZARV1Y Curncy'].rolling(window=2).apply(test)
print (df_implied_full)
USDZARV1Y Curncy madtest
0 1.2 NaN
1 4.6 2.90
2 7.3 5.95
3 4.9 6.10
4 1.5 3.20