import numpy as np
from numpy.fft import fft2, ifft2
import cv2
from PIL import Image
def wiener_filter(img,kernel,K = 10):
kernel=([3,1],[2,1])
dummy = np.copy(img)
kernel = np.pad(kernel, [(0, dummy.shape[0] - kernel.shape[0]), (0, dummy.shape[1] - kernel.shape[1])], 'constant')
# Fourier Transform
dummy = fft2(dummy)
kernel = fft2(kernel)
kernel = np.conj(kernel) / (np.abs(kernel) ** 2 + K)
dummy = dummy * kernel
dummy = np.abs(ifft2(dummy))
return np.uint8(dummy)
img = cv2.imread("C:\\Users\\anup\\Desktop\\New folder\\leo.jpg")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#gray1 = cv2.cvtColor(gray,cv2.COLOR_GRAY2RGB)
kernel=([3,1],[2,1])
fm = wiener_filter(img,kernel)
cv2.imshow("Image", img)
key = cv2.waitKey(0)
我正在尝试实施Wiener滤镜以对模糊图像执行反卷积。我的实现是这样的
执行此操作时出现错误
Traceback (most recent call last):
File "C:\Python27\deblur.py", line 21, in <module>
fm = wiener_filter(img,kernel)
File "C:\Python27\deblur.py", line 8, in wiener_filter
kernel = np.pad(kernel, [(0, dummy.shape[0] - kernel.shape[0]), (0, dummy.shape[1] - kernel.shape[1])], 'constant')
AttributeError: 'tuple' object has no attribute 'shape'
答案 0 :(得分:2)
那里:
def wiener_filter(img,kernel,K = 10):
kernel=([3,1],[2,1])
您定义了一个以kernel
为参数的函数,并直接覆盖它。
然后您尝试使用kernel.shape
([3,1],[2,1])
显然,shape
是用于numpy
ndarray
个对象的方法。
所以这可能适合你:
def wiener_filter(img,kernel,K = 10):
kernel=np.array([[3,1],[2,1]])
或者@Eric提到:
def wiener_filter(img,kernel,K = 10):
kernel=np.array(kernel)