我正在尝试将此MS Solver Foundation example从C#转换为F#,但不断遇到类型转换问题,特别是在第5节中,C#接受从double到Rational的隐式转换,F#不接受 - 任何想法如何解决? Rational类型本身对我来说是一个难题,因为除了将其设置为预定义的Rational.One或Rational.Zero之外,几乎不可能进行初始化。有任何想法吗?请参阅下面的简约缩小版本(不使用任何数组或任何内容)。
let main argv =
printfn "%A" argv
Console.WriteLine("\nBegin Solver demo\n")
let mean = 1.0
let solver = new InteriorPointSolver()
let allocation = ref 0
solver.AddVariable("MSFT", allocation) |> ignore
solver.SetBounds(!allocation, Rational.Zero, Rational.One)
let expRet = ref 0
solver.AddRow("expRet", expRet) |> ignore
solver.SetBounds(!expRet, Rational.Zero, Rational.PositiveInfinity)
let unity = ref 0
solver.AddRow("Investments sum to one", unity) |> ignore
solver.SetBounds(!unity, Rational.One, Rational.One)
solver.SetCoefficient(!expRet, !allocation, Rational.)
solver.SetCoefficient(!unity, !allocation, Rational.One);
Console.WriteLine("\nEnd Solver demo\n")
Console.ReadLine() |> ignore
0 // return an integer exit code
答案 0 :(得分:0)
这是一个旧帖子,但没有人回答,这些信息可能对其他人有用。
我不懂 F#(所以任何懂 F# 的人,请编辑我的语法),但 Rational 类中的以下方法应该有用。您还需要来自 Microsoft.SolverFoundation.Common 名称空间的 BigInteger 类。 (见https://docs.microsoft.com/en-us/previous-versions/visualstudio/ff526610)
首先,正如您所指出的,您可以使用许多“隐式”构造函数中的任何一个,直接从其他类型构造一个 Rational:
let Rational rat5 = Rational.op_Implicit(5.0:float)
let Rational rat2 = Rational.op_Implicit(2:int)
我猜测 F# 语法的地方。
另一个非常有说明性的例子,货币价值(例如 10.43 美元)很少能用双精度准确表示。 (唯一“美分”值精确到双精度值是 xx.00、xx.25、xx.50 和 xx.75,所有其他值都会出现数字错误/差异。)所以当我们从一个声称代表货币价值的 double 构造一个理性时,我们经常必须小心。这为另一种构造有理数的方法提供了一个很好的示例:
let BigInteger bi100 = BigInteger.op_Implicit(100:int)
let float mv = 1000000000000.43 //I am assuming this gets classified by F# as a double.
//Now, we assume mv is any double that represents a monetary value, and so should be an even 2 decimal places in base 10
//I have no idea how to Round in F#, nor how to cast to an integer - I have guessed - but should illustrate the idea if it is not valid F#
let BigInteger cents = BigInteger.op_Implicit( ( Round(mv * 100.0) ):int ) //get exact monetary value, in cents
let Rational ratMv = Rational.Get(cents:BigInteger, bi100:BigInteger)
因此我们从两个 BigInteger 类型构建了一个 Rational,它准确地表示存储为双精度值的货币值 mv。
这里是整个 Rational 界面,尽管使用的是 c# 语法:
namespace Microsoft.SolverFoundation.Common
{
[CLSCompliant(true)]
public struct Rational : IComparable, IComparable<Rational>, IEquatable<Rational>, IComparable<BigInteger>, IEquatable<BigInteger>, IComparable<int>, IEquatable<int>, IComparable<uint>, IEquatable<uint>, IComparable<long>, IEquatable<long>, IComparable<ulong>, IEquatable<ulong>, IComparable<double>, IEquatable<double>
{
public static readonly Rational NegativeInfinity;
public static readonly Rational Zero;
public static readonly Rational One;
public static readonly Rational PositiveInfinity;
public static readonly Rational Indeterminate;
public static readonly Rational UnsignedInfinity;
public bool IsOne { get; }
public bool IsFinite { get; }
public bool IsIndeterminate { get; }
public bool IsInfinite { get; }
public bool IsSignedInfinity { get; }
public bool IsUnsignedInfinity { get; }
public bool HasSign { get; }
public bool IsNegativeInfinity { get; }
public bool IsZero { get; }
public int BitCount { get; }
public int Sign { get; }
public BigInteger Numerator { get; }
public bool IsPositiveInfinity { get; }
public BigInteger Denominator { get; }
public Rational AbsoluteValue { get; }
public static Rational AddMul(Rational ratAdd, Rational ratMul1, Rational ratMul2);
public static Rational Get(BigInteger bnNum, BigInteger bnDen);
public static void Negate(ref Rational num);
public static bool Power(Rational ratBase, Rational ratExp, out Rational ratRes);
public void AppendDecimalString(StringBuilder sb, int cchMax);
public int CompareTo(BigInteger bn);
[CLSCompliant(false)]
public int CompareTo(uint u);
public int CompareTo(Rational rat);
public int CompareTo(long nn);
[CLSCompliant(false)]
public int CompareTo(ulong uu);
public int CompareTo(double dbl);
public int CompareTo(int n);
public int CompareTo(object obj);
[CLSCompliant(false)]
public bool Equals(uint u);
public bool Equals(Rational rat);
public bool Equals(long nn);
[CLSCompliant(false)]
public bool Equals(ulong uu);
public bool Equals(int n);
public bool Equals(BigInteger bn);
public override bool Equals(object obj);
public bool Equals(double dbl);
public Rational GetCeiling();
public Rational GetCeilingResidual();
public Rational GetFloor();
public Rational GetFloorResidual();
public Rational GetFractionalPart();
public override int GetHashCode();
public Rational GetIntegerPart();
public double GetSignedDouble();
public Rational Invert();
public bool IsInteger(out BigInteger bn);
public bool IsInteger();
public double ToDouble();
public override string ToString();
public static Rational operator +(Rational rat1, Rational rat2);
public static Rational operator -(Rational rat);
public static Rational operator -(Rational rat1, Rational rat2);
public static Rational operator *(Rational rat1, Rational rat2);
public static Rational operator /(Rational rat1, Rational rat2);
[CLSCompliant(false)]
public static bool operator ==(uint n, Rational rat);
[CLSCompliant(false)]
public static bool operator ==(Rational rat, uint n);
public static bool operator ==(int n, Rational rat);
public static bool operator ==(long n, Rational rat);
public static bool operator ==(Rational rat, BigInteger bn);
public static bool operator ==(Rational rat, int n);
public static bool operator ==(Rational rat, long n);
public static bool operator ==(BigInteger bn, Rational rat);
public static bool operator ==(double dbl, Rational rat);
[CLSCompliant(false)]
public static bool operator ==(Rational rat, ulong n);
public static bool operator ==(Rational rat1, Rational rat2);
[CLSCompliant(false)]
public static bool operator ==(ulong n, Rational rat);
public static bool operator ==(Rational rat, double dbl);
[CLSCompliant(false)]
public static bool operator !=(ulong n, Rational rat);
[CLSCompliant(false)]
public static bool operator !=(Rational rat, ulong n);
[CLSCompliant(false)]
public static bool operator !=(uint n, Rational rat);
public static bool operator !=(BigInteger bn, Rational rat);
[CLSCompliant(false)]
public static bool operator !=(Rational rat, uint n);
public static bool operator !=(double dbl, Rational rat);
public static bool operator !=(int n, Rational rat);
public static bool operator !=(Rational rat, int n);
public static bool operator !=(long n, Rational rat);
public static bool operator !=(Rational rat, BigInteger bn);
public static bool operator !=(Rational rat1, Rational rat2);
public static bool operator !=(Rational rat, double dbl);
public static bool operator !=(Rational rat, long n);
public static bool operator <(double dbl, Rational rat);
public static bool operator <(Rational rat, double dbl);
[CLSCompliant(false)]
public static bool operator <(ulong n, Rational rat);
[CLSCompliant(false)]
public static bool operator <(Rational rat, ulong n);
[CLSCompliant(false)]
public static bool operator <(uint n, Rational rat);
public static bool operator <(Rational rat1, Rational rat2);
public static bool operator <(Rational rat, BigInteger bn);
public static bool operator <(long n, Rational rat);
public static bool operator <(BigInteger bn, Rational rat);
public static bool operator <(Rational rat, int n);
public static bool operator <(int n, Rational rat);
[CLSCompliant(false)]
public static bool operator <(Rational rat, uint n);
public static bool operator <(Rational rat, long n);
public static bool operator >(long n, Rational rat);
public static bool operator >(Rational rat1, Rational rat2);
public static bool operator >(Rational rat, BigInteger bn);
public static bool operator >(BigInteger bn, Rational rat);
public static bool operator >(Rational rat, int n);
[CLSCompliant(false)]
public static bool operator >(Rational rat, uint n);
public static bool operator >(double dbl, Rational rat);
[CLSCompliant(false)]
public static bool operator >(uint n, Rational rat);
public static bool operator >(int n, Rational rat);
public static bool operator >(Rational rat, long n);
public static bool operator >(Rational rat, double dbl);
[CLSCompliant(false)]
public static bool operator >(ulong n, Rational rat);
[CLSCompliant(false)]
public static bool operator >(Rational rat, ulong n);
[CLSCompliant(false)]
public static bool operator <=(ulong n, Rational rat);
public static bool operator <=(Rational rat, int n);
public static bool operator <=(Rational rat, BigInteger bn);
public static bool operator <=(int n, Rational rat);
[CLSCompliant(false)]
public static bool operator <=(Rational rat, uint n);
public static bool operator <=(BigInteger bn, Rational rat);
[CLSCompliant(false)]
public static bool operator <=(Rational rat, ulong n);
public static bool operator <=(Rational rat1, Rational rat2);
public static bool operator <=(long n, Rational rat);
public static bool operator <=(Rational rat, double dbl);
public static bool operator <=(double dbl, Rational rat);
[CLSCompliant(false)]
public static bool operator <=(uint n, Rational rat);
public static bool operator <=(Rational rat, long n);
public static bool operator >=(Rational rat, BigInteger bn);
public static bool operator >=(Rational rat1, Rational rat2);
[CLSCompliant(false)]
public static bool operator >=(Rational rat, ulong n);
[CLSCompliant(false)]
public static bool operator >=(uint n, Rational rat);
public static bool operator >=(Rational rat, long n);
public static bool operator >=(int n, Rational rat);
public static bool operator >=(BigInteger bn, Rational rat);
public static bool operator >=(Rational rat, int n);
[CLSCompliant(false)]
public static bool operator >=(ulong n, Rational rat);
public static bool operator >=(long n, Rational rat);
public static bool operator >=(double dbl, Rational rat);
[CLSCompliant(false)]
public static bool operator >=(Rational rat, uint n);
public static bool operator >=(Rational rat, double dbl);
public static implicit operator Rational(double dbl);
public static implicit operator Rational(BigInteger bn);
[CLSCompliant(false)]
public static implicit operator Rational(uint u);
public static implicit operator Rational(long nn);
[CLSCompliant(false)]
public static implicit operator Rational(ulong uu);
public static implicit operator Rational(int n);
public static explicit operator BigInteger(Rational rat);
public static explicit operator double(Rational rat);
[CLSCompliant(false)]
public static explicit operator ulong(Rational rat);
public static explicit operator long(Rational rat);
[CLSCompliant(false)]
public static explicit operator uint(Rational rat);
public static explicit operator int(Rational rat);
}
}
可以在上述链接中找到的另一个非常有用的信息是此表:
"下表列出了有理数的特殊情况是如何表示的。
有理数 | 代表 |
---|---|
非零有限有理值 | (numerator, denominator) 分母 > 0 |
零 | (0, 0) |
负无穷 | (-1, 0) |
正无穷 | (+1, 0) |
无符号无穷 | (+2, 0) |
不确定(NaN) | (+3, 0) |
将非零值除以零会导致无符号无穷大,因为 0 是无符号的。将有限值除以任何无限值的结果为 0。"