我有以下RDD:
rdd.take(5)给了我:
[DenseVector([9.2463, 1.0, 0.392, 0.3381, 162.6437, 7.9432, 8.3397, 11.7699]),
DenseVector([9.2463, 1.0, 0.392, 0.3381, 162.6437, 7.9432, 8.3397, 11.7699]),
DenseVector([5.0, 20.0, 0.3444, 0.3295, 54.3122, 4.0, 4.0, 9.0]),
DenseVector([9.2463, 1.0, 0.392, 0.3381, 162.6437, 7.9432, 8.3397, 11.7699]),
DenseVector([9.2463, 2.0, 0.392, 0.3381, 162.6437, 7.9432, 8.3397, 11.7699])]
我想把它变成一个看似如下的数据框:
-------------------------------------------------------------------
| features |
-------------------------------------------------------------------
| [9.2463, 1.0, 0.392, 0.3381, 162.6437, 7.9432, 8.3397, 11.7699] |
|-----------------------------------------------------------------|
| [9.2463, 1.0, 0.392, 0.3381, 162.6437, 7.9432, 8.3397, 11.7699] |
|-----------------------------------------------------------------|
| [5.0, 20.0, 0.3444, 0.3295, 54.3122, 4.0, 4.0, 9.0] |
|-----------------------------------------------------------------|
| [9.2463, 1.0, 0.392, 0.3381, 162.6437, 7.9432, 8.3397, 11.7699] |
|-----------------------------------------------------------------|
| [9.2463, 2.0, 0.392, 0.3381, 162.6437, 7.9432, 8.3397, 11.7699] |
|-----------------------------------------------------------------|
这可能吗?我尝试使用df_new = sqlContext.createDataFrame(rdd,['features'])
,但它没有用。有没有人有任何建议?谢谢!
答案 0 :(得分:4)
首先映射到tuples
:
rdd.map(lambda x: (x, )).toDF(["features"])
请记住,从Spark 2.0开始,有两种不同的Vector
实施,ml
算法需要pyspark.ml.Vector
。