我使用neighbours
创建了一个DataFrame sim_measure_i
,它也是一个DataFrame。
neighbours= sim_measure_i.apply(lambda s: s.nlargest(k).index.tolist(), axis =1)
neighbours
看起来像这样:
1500 [0, 1, 2, 3, 4]
1501 [0, 1, 2, 3, 4]
1502 [0, 1, 2, 3, 4]
1503 [7230, 12951, 13783, 8000, 18077]
1504 [1, 3, 6, 27, 47]
这里的第二列有列表 - 我想迭代这个DataFrame并在列表上工作,这样我就可以读取列表中的每个元素 - 例如7230并在另一个DataFrameI中查找7230的得分包含(id,得分了)。
然后,我想在此DataFrame中添加一个列,使其看起来像
test_case_id nbr_list scores
1500 [0, 1, 2, 3, 4] [+1, -1, -1, +1, -1]
1501 [0, 1, 2, 3, 4] [+1, +1, +1, -1, -1]
1502 [0, 1, 2, 3, 4] [+1, +1, +1, -1, -1]
1503 [7230, 12951, 13783, 8000, 18077] [+1, +1, +1, -1, -1]
1504 [1, 3, 6, 27, 47] [+1, +1, +1, -1, -1]
编辑:我写了一个方法get_scores()
def get_scores(list_of_neighbours):
score_matrix = []
for x, val in enumerate(list_of_neighbours):
score_matrix.append(df.iloc[val].score)
return score_matrix
当我尝试在每个lambda
上使用nbr_list
时,我收到此错误:
TypeError: ("cannot do positional indexing on <class 'pandas.indexes.numeric.Int64Index'> with these indexers [0] of <type 'str'>", u'occurred at index 1500')
导致此问题的代码:
def nearest_neighbours(similarity_matrix, k):
neighbours = pd.DataFrame(similarity_matrix.apply(lambda s: s.nlargest(k).index.tolist(), axis =1))
neighbours = neighbours.rename(columns={0 : 'nbr_list'})
nbr_scores = neighbours.apply(lambda l: get_scores(l.nbr_list), axis=1)
print neighbours
答案 0 :(得分:1)
您可以尝试嵌套循环:
for i in range(neighbours.shape[0]): #iterate over each row
for j in range(len(neighbours['neighbours_lists'].iloc[i])): #iterate over each element of the list
a = neighbours['neighbours_lists'].iloc[i][j] #access the element of the list index j in cell location of row i
其中i
是外循环变量,它遍历每一行,j
是内循环变量,它遍历每个单元格内列表的长度。
答案 1 :(得分:1)
原始数据框:
In [68]: df
Out[68]:
test_case_id neighbours_lists
0 1500 [0, 1, 2, 3, 4]
1 1501 [0, 1, 2, 3, 4]
2 1502 [0, 1, 2, 3, 4]
3 1503 [7230, 12951, 13783, 8000, 18077]
4 1504 [1, 3, 6, 27, 47]
自定义函数,它接受id和list并进行一些计算以评估得分:
In [69]: def g(_id, nbs):
...: return ['-1' if (_id + 1) % (nb + 1) else '+1' for nb in nbs]
...:
Apply自定义函数到原始数据框的所有行:
In [70]: scores = df.apply(lambda x: g(x.test_case_id, x.neighbours_lists), axis=1)
In [71]: df = pd.concat([df, scores.to_frame(name='scores')], 1)
In [72]: df
Out[72]:
test_case_id neighbours_lists scores
0 1500 [0, 1, 2, 3, 4] [+1, -1, -1, -1, -1]
1 1501 [0, 1, 2, 3, 4] [+1, +1, -1, -1, -1]
2 1502 [0, 1, 2, 3, 4] [+1, -1, +1, -1, -1]
3 1503 [7230, 12951, 13783, 8000, 18077] [-1, -1, -1, -1, -1]
4 1504 [1, 3, 6, 27, 47] [-1, -1, +1, -1, -1]
答案 2 :(得分:1)
假设您从neighbors
开始,就像这样。
In [87]: neighbors = pd.DataFrame({'neighbors_list': [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]})
In [88]: neighbors
Out[88]:
neighbors_list
0 [0, 1, 2, 3, 4]
1 [0, 1, 2, 3, 4]
您没有准确指定其他DataFrame(包含id-score对看起来如何),所以这里是近似值。
In [89]: id_score = pd.DataFrame({'id': [0, 1, 2, 3, 4], 'score': [1, -1, -1, 1, -1]})
In [90]: id_score
Out[90]:
id score
0 0 1
1 1 -1
2 2 -1
3 3 1
4 4 -1
您可以将其转换为字典:
In [91]: d = id_score.set_index('id')['score'].to_dict()
然后apply
:
In [92]: neighbors.neighbors_list.apply(lambda l: [d[e] for e in l])
Out[92]:
0 [1, -1, -1, 1, -1]
1 [1, -1, -1, 1, -1]
Name: neighbors_list, dtype: object