如何在Numpy中执行此操作:谢谢!
输入:
A = np.array([0, 1, 2, 3])
B = np.array([[3, 2, 0], [0, 2, 1], [2, 3, 1], [3, 0, 1]])
输出
result = [[0, 1, 3], [1, 2, 3], [0, 1, 2], [0, 2, 3]]
Python中的:
A = np.array([0 ,1 ,2 ,3])
B = np.array([[3 ,2 ,0], [0 ,2 ,1], [2 ,3 ,1], [3 ,0 ,1]])
result = []
for x , valA in enumerate (A) :
inArray = []
for y , valB in enumerate (B) :
if valA in valB:
inArray.append (y)
result.append (inArray)
print result
# result = [[0, 1, 3], [1, 2, 3], [0, 1, 2], [0, 2, 3]]
答案 0 :(得分:3)
方法#1
这是使用broadcasting
-
R,C = np.where((A[:,None,None] == B).any(-1))
out = np.split(C,np.flatnonzero(R[1:]>R[:-1])+1)
方法#2
假设A
和B
保留正数,我们可以考虑在2D
网格上代表索引,以便可以认为B
可以保留列每行索引。在与2D
对应的B
网格到位后,我们只需要考虑与A
相交的列。最后,我们在这样的True
网格中获得2D
值的索引,以便为我们提供R
和C
值。这应该更加节省内存。
因此,替代方法看起来像这样 -
ncols = B.max()+1
nrows = B.shape[0]
mask = np.zeros((nrows,ncols),dtype=bool)
mask[np.arange(nrows)[:,None],B] = 1
mask[:,~np.in1d(np.arange(mask.shape[1]),A)] = 0
R,C = np.where(mask.T)
out = np.split(C,np.flatnonzero(R[1:]>R[:-1])+1)
示例运行 -
In [43]: A
Out[43]: array([0, 1, 2, 3])
In [44]: B
Out[44]:
array([[3, 2, 0],
[0, 2, 1],
[2, 3, 1],
[3, 0, 1]])
In [45]: out
Out[45]: [array([0, 1, 3]), array([1, 2, 3]), array([0, 1, 2]), array([0, 2, 3])]
运行时测试
按100x
扩展数据集大小,这是一个快速的运行时测试结果 -
In [85]: def index_1din2d(A,B):
...: R,C = np.where((A[:,None,None] == B).any(-1))
...: out = np.split(C,np.flatnonzero(R[1:]>R[:-1])+1)
...: return out
...:
...: def index_1din2d_initbased(A,B):
...: ncols = B.max()+1
...: nrows = B.shape[0]
...: mask = np.zeros((nrows,ncols),dtype=bool)
...: mask[np.arange(nrows)[:,None],B] = 1
...: mask[:,~np.in1d(np.arange(mask.shape[1]),A)] = 0
...: R,C = np.where(mask.T)
...: out = np.split(C,np.flatnonzero(R[1:]>R[:-1])+1)
...: return out
...:
In [86]: A = np.unique(np.random.randint(0,10000,(400)))
...: B = np.random.randint(0,10000,(400,300))
...:
In [87]: %timeit [np.where((B == x).sum(axis = 1))[0] for x in A]
1 loop, best of 3: 161 ms per loop # @Psidom's soln
In [88]: %timeit index_1din2d(A,B)
10 loops, best of 3: 91.5 ms per loop
In [89]: %timeit index_1din2d_initbased(A,B)
10 loops, best of 3: 33.4 ms per loop
进一步提升绩效!
好吧,或者我们可以在转换方式中在第二种方法中创建2D
网格。我们的想法是避免R,C = np.where(mask.T)
中的转置,这似乎是瓶颈。因此,第二种方法的修改版本和相关的运行时将看起来像这样 -
In [135]: def index_1din2d_initbased_v2(A,B):
...: nrows = B.max()+1
...: ncols = B.shape[0]
...: mask = np.zeros((nrows,ncols),dtype=bool)
...: mask[B,np.arange(ncols)[:,None]] = 1
...: mask[~np.in1d(np.arange(mask.shape[0]),A)] = 0
...: R,C = np.where(mask)
...: out = np.split(C,np.flatnonzero(R[1:]>R[:-1])+1)
...: return out
...:
In [136]: A = np.unique(np.random.randint(0,10000,(400)))
...: B = np.random.randint(0,10000,(400,300))
...:
In [137]: %timeit index_1din2d_initbased(A,B)
10 loops, best of 3: 57.5 ms per loop
In [138]: %timeit index_1din2d_initbased_v2(A,B)
10 loops, best of 3: 25.9 ms per loop
答案 1 :(得分:0)
包含numpy
和list-comprehension
import numpy as np
[np.where((B == x).sum(axis = 1))[0] for x in A]
# [array([0, 1, 3]), array([1, 2, 3]), array([0, 1, 2]), array([0, 2, 3])]