numpy - 返回索引如果一个3d数组中的值

时间:2016-09-15 20:44:15

标签: python arrays numpy indexing collect

如何在Numpy中执行此操作:谢谢!

输入:

A = np.array([0, 1, 2, 3]) 

B = np.array([[3, 2, 0], [0, 2, 1], [2, 3, 1], [3, 0, 1]]) 

输出

result = [[0, 1, 3], [1, 2, 3], [0, 1, 2], [0, 2, 3]]
Python中的

A = np.array([0 ,1 ,2 ,3]) 
B = np.array([[3 ,2 ,0], [0 ,2 ,1], [2 ,3 ,1], [3 ,0 ,1]]) 
result = []
for x ,  valA in enumerate (A) :
    inArray = []
    for y , valB in enumerate (B) : 
        if valA in valB:
            inArray.append (y)
    result.append (inArray)
print result

# result = [[0, 1, 3], [1, 2, 3], [0, 1, 2], [0, 2, 3]]

2 个答案:

答案 0 :(得分:3)

方法#1

这是使用broadcasting -

的NumPy矢量化方法
R,C = np.where((A[:,None,None] == B).any(-1))
out = np.split(C,np.flatnonzero(R[1:]>R[:-1])+1)

方法#2

假设AB保留正数,我们可以考虑在2D网格上代表索引,以便可以认为B可以保留列每行索引。在与2D对应的B网格到位后,我们只需要考虑与A相交的列。最后,我们在这样的True网格中获得2D值的索引,以便为我们提供RC值。这应该更加节省内存。

因此,替代方法看起来像这样 -

ncols = B.max()+1
nrows = B.shape[0]
mask = np.zeros((nrows,ncols),dtype=bool)
mask[np.arange(nrows)[:,None],B] = 1
mask[:,~np.in1d(np.arange(mask.shape[1]),A)] = 0
R,C = np.where(mask.T)
out = np.split(C,np.flatnonzero(R[1:]>R[:-1])+1)

示例运行 -

In [43]: A
Out[43]: array([0, 1, 2, 3])

In [44]: B
Out[44]: 
array([[3, 2, 0],
       [0, 2, 1],
       [2, 3, 1],
       [3, 0, 1]])

In [45]: out
Out[45]: [array([0, 1, 3]), array([1, 2, 3]), array([0, 1, 2]), array([0, 2, 3])]

运行时测试

100x扩展数据集大小,这是一个快速的运行时测试结果 -

In [85]: def index_1din2d(A,B):
    ...:     R,C = np.where((A[:,None,None] == B).any(-1))
    ...:     out = np.split(C,np.flatnonzero(R[1:]>R[:-1])+1)
    ...:     return out
    ...: 
    ...: def index_1din2d_initbased(A,B):
    ...:     ncols = B.max()+1
    ...:     nrows = B.shape[0]
    ...:     mask = np.zeros((nrows,ncols),dtype=bool)
    ...:     mask[np.arange(nrows)[:,None],B] = 1
    ...:     mask[:,~np.in1d(np.arange(mask.shape[1]),A)] = 0
    ...:     R,C = np.where(mask.T)
    ...:     out = np.split(C,np.flatnonzero(R[1:]>R[:-1])+1)
    ...:     return out
    ...: 

In [86]: A = np.unique(np.random.randint(0,10000,(400)))
    ...: B = np.random.randint(0,10000,(400,300))
    ...: 

In [87]: %timeit [np.where((B == x).sum(axis = 1))[0] for x in A]
1 loop, best of 3: 161 ms per loop # @Psidom's soln

In [88]: %timeit index_1din2d(A,B)
10 loops, best of 3: 91.5 ms per loop

In [89]: %timeit index_1din2d_initbased(A,B)
10 loops, best of 3: 33.4 ms per loop

进一步提升绩效!

好吧,或者我们可以在转换方式中在第二种方法中创建2D网格。我们的想法是避免R,C = np.where(mask.T)中的转置,这似乎是瓶颈。因此,第二种方法的修改版本和相关的运行时将看起来像这样 -

In [135]: def index_1din2d_initbased_v2(A,B):
     ...:     nrows = B.max()+1
     ...:     ncols = B.shape[0]
     ...:     mask = np.zeros((nrows,ncols),dtype=bool)
     ...:     mask[B,np.arange(ncols)[:,None]] = 1
     ...:     mask[~np.in1d(np.arange(mask.shape[0]),A)] = 0
     ...:     R,C = np.where(mask)
     ...:     out = np.split(C,np.flatnonzero(R[1:]>R[:-1])+1)
     ...:     return out
     ...: 

In [136]: A = np.unique(np.random.randint(0,10000,(400)))
     ...: B = np.random.randint(0,10000,(400,300))
     ...: 

In [137]: %timeit index_1din2d_initbased(A,B)
10 loops, best of 3: 57.5 ms per loop

In [138]: %timeit index_1din2d_initbased_v2(A,B)
10 loops, best of 3: 25.9 ms per loop

答案 1 :(得分:0)

包含numpylist-comprehension

组合的选项
import numpy as np
[np.where((B == x).sum(axis = 1))[0] for x in A]
# [array([0, 1, 3]), array([1, 2, 3]), array([0, 1, 2]), array([0, 2, 3])]