使用Spark,我在Scala中有一个类型为val rdd = RDD[(x: Int, y:Int), cov:Double]
的数据结构,其中RDD的每个元素代表一个矩阵的元素,x
代表行,y
代表列和cov
表示元素的值:
我需要从这个矩阵的行创建SparseVectors。所以我决定先将rdd转换为RDD[x: Int, (y:Int, cov:Double)]
,然后使用groupByKey将特定行的所有元素放在一起,如下所示:
val rdd2 = rdd.map{case ((x,y),cov) => (x, (y, cov))}.groupByKey()
现在我需要创建SparseVectors:
val N = 7 //Vector Size
val spvec = {(x: Int,y: Iterable[(Int, Double)]) => new SparseVector(N.toLong, Array(y.map(el => el._1.toInt)), Array(y.map(el => el._2.toDouble)))}
val vecs = rdd2.map(spvec)
然而,这是弹出的错误。
type mismatch; found :Iterable[Int] required:Int
type mismatch; found :Iterable[Double] required:Double
我猜测y.map(el => el._1.toInt)
正在返回一个无法应用Array的迭代。如果有人可以帮忙解决这个问题,我将不胜感激。
答案 0 :(得分:0)
最简单的解决方案是转换为func (talk *Talk) GetTalkByUsersId() bool {
talk1 := new(Talk)
talk2 := new(Talk)
curs, _ := r.Table("Talks").
Filter(r.Row.Field("UserIdX").Eq(talk.UserIdX)).
Filter(r.Row.Field("UserIdY").Eq(talk.UserIdY)).
Run(api.Sess)
curs2, _ := r.Table("Talks").
Filter(r.Row.Field("UserIdX").Eq(talk.UserIdY)).
Filter(r.Row.Field("UserIdY").Eq(talk.UserIdX)).
Run(api.Sess)
curs.One(&talk1)
curs2.One(&talk2)
if talk1.Id == "" && talk2.Id == "" {
return false
}
if talk1.Id != "" {
talk.copyTalk(talk1)
} else {
talk.copyTalk(talk2)
}
return true
}
:
RowMatrix
如果要保留行索引,可以改为使用import org.apache.spark.mllib.linalg.distributed.{CoordinateMatrix, MatrixEntry}
val rdd: RDD[((Int, Int), Double)] = ???
val vs: RDD[org.apache.spark.mllib.linalg.SparseVector]= new CoordinateMatrix(
rdd.map{
case ((x, y), cov) => MatrixEntry(x, y, cov)
}
).toRowMatrix.rows.map(_.toSparse)
:
toIndexedRowMatrix