我正在尝试使用带有消息的文本文件,并通过NLTK wordnet synset函数迭代每个单词。我想这样做,因为我想创建一个拼写错误的单词列表。例如,如果我这样做:
wn.synsets('dog')
我得到输出:
[Synset('dog.n.01'),
Synset('frump.n.01'),
Synset('dog.n.03'),
Synset('cad.n.01'),
Synset('frank.n.02'),
Synset('pawl.n.01'),
Synset('andiron.n.01'),
Synset('chase.v.01')]
现在,如果这个词拼写错误,那么:
wn.synsets('doeg')
我得到输出:
[]
如果我返回一个空列表,我想将拼写错误的单词保存在另一个列表中,并继续迭代文件的其余部分:
mispelled_words = ['doeg']
我不知道如何做到这一点,下面是我的代码,我需要在变量“chat_message_tokenize”之后进行迭代。名称路径是我要删除的单词:
import nltk
import csv
from nltk.tag import pos_tag
from nltk.corpus import wordnet as wn
from nltk.stem.snowball import SnowballStemmer
def text_function():
#nltk.download('punkt')
#nltk.download('averaged_perceptron_tagger')
# Read in chat messages and names files
chat_path = 'filepath.csv'
try:
with open(chat_path) as infile:
chat_messages = infile.read()
except Exception as error:
print(error)
return
name_path = 'filepath.txt'
try:
with open(names_path) as infile:
names = infile.read()
except Exception as error:
print(error)
return
chat_messages = chat_messages.split('Chats:')[1].strip()
names = names.split('Name:')[1].strip().lower()
chat_messages_tokenized = nltk.word_tokenize(chat_messages)
names_tokenized = nltk.word_tokenize(names)
# adding part of speech(pos) tag and dropping proper nouns
pos_drop = pos_tag(chat_messages_tokenized)
chat_messages_tokenized = [SnowballStemmer('english').stem(word.lower()) for word, pos in pos_drop if pos != 'NNP' and word not in names_tokenized]
for chat_messages_tokenized
if not wn.synset(chat_messages_tokenized):
print('empty list')
if __name__ == '__main__':
text_function()
# for s in wn.synsets('dog'):
# lemmas = s.lemmas()
# for l in lemmas:
# if l.name() == stemmer:
# print (l.synset())
csv_path ='OutputFilePath.csv'
try:
with open(csv_path, 'w') as outfile:
writer = csv.writer(outfile)
for word in chat_messages_tokenized:
writer.writerow([word])
except Exception as error:
print(error)
return
if __name__ == '__main__':
text_function()
提前谢谢你。
答案 0 :(得分:1)
您的说明中已经有伪代码,您可以按照说明编写代码,如下所示:
misspelled_words = [] # The list to store misspelled words
for word in chat_messages_tokenized: # loop through each word
if not wn.synset(word): # if there is no synset for this word
misspelled_words.append(word) # add it to misspelled word list
print(misspelled_words)