我目前正在尝试将API请求的JSON输出转换为CSV格式,以便将结果存储到数据库中。这是我目前的参考代码:
import pyodbc
import csv
#import urllib2
import json
import collections
import requests
#import pprint
#import functools
print ("Connecting via ODBC")
conn = pyodbc.connect('DSN=DSN', autocommit=True)
print ("Connected!\n")
cur = conn.cursor()
sql = """SELECT DATA"""
cur.execute(sql)
#df = pandas.read_sql_query(sql, conn)
#df.to_csv('TEST.csv')
#print('CSV sheet is ready to go!')
rows = cur.fetchall()
obs_list = []
for row in rows:
d = collections.OrderedDict()
d['addressee'] = row.NAME
d['street'] = row.ADDRESS
d['city'] = row.CITY
d['state'] = row.STATE
d['zipcode'] = row.ZIP
obs_list.append(d)
obs_file = 'TEST.json'
with open(obs_file, 'w') as file:
json.dump(obs_list, file)
print('Run through API')
url = 'https://api.smartystreets.com/street-address?'
headers = {'content-type': 'application/json'}
with open('test1.json', 'r') as run:
dict_run = run.readlines()
dict_ready = (''.join(dict_run))
r = requests.post(url , data=dict_ready, headers=headers)
ss_output = r.text
output = 'output.json'
with open(output,'w') as of:
json.dump(ss_output, of)
print('I think it works')
f = open('output.json')
data = json.load(f)
data_1 = data['analysis']
data_2 = data['metadata']
data_3 = data['components']
entity_data = open('TEST.csv','w')
csvwriter = csv.writer(entity_data)
count = 0
count2 = 0
count3 = 0
for ent in data_1:
if count == 0:
header = ent.keys()
csvwriter.writerow(header)
count += 1
csvwriter.writerow(ent.values())
for ent_2 in data_2:
if count2 == 0:
header2 = ent_2.keys()
csvwriter.writerow(header2)
count2 += 1
csvwriter.writerow(ent_2.values())
for ent_3 in data_3:
if count3 == 0:
header3 = ent_3.keys()
csvwriter.writerow(header3)
count3 += 1
csvwriter.writerow(ent_3.values())
entity_data.close()
API的示例输出:
[
{
"input_index": 0,
"candidate_index": 0,
"delivery_line_1": "1 Santa Claus Ln",
"last_line": "North Pole AK 99705-9901",
"delivery_point_barcode": "997059901010",
"components": {
"primary_number": "1",
"street_name": "Santa Claus",
"street_suffix": "Ln",
"city_name": "North Pole",
"state_abbreviation": "AK",
"zipcode": "99705",
"plus4_code": "9901",
"delivery_point": "01",
"delivery_point_check_digit": "0"
},
"metadata": {
"record_type": "S",
"zip_type": "Standard",
"county_fips": "02090",
"county_name": "Fairbanks North Star",
"carrier_route": "C004",
"congressional_district": "AL",
"rdi": "Commercial",
"elot_sequence": "0001",
"elot_sort": "A",
"latitude": 64.75233,
"longitude": -147.35297,
"precision": "Zip8",
"time_zone": "Alaska",
"utc_offset": -9,
"dst": true
},
"analysis": {
"dpv_match_code": "Y",
"dpv_footnotes": "AABB",
"dpv_cmra": "N",
"dpv_vacant": "N",
"active": "Y",
"footnotes": "L#"
}
},
{
"input_index": 1,
"candidate_index": 0,
"delivery_line_1": "Loop land 1",
"last_line": "North Pole AK 99705-9901",
"delivery_point_barcode": "997059901010",
"components": {
"primary_number": "1",
"street_name": "Lala land",
"street_suffix": "Ln",
"city_name": "North Pole",
"state_abbreviation": "AK",
"zipcode": "99705",
"plus4_code": "9901",
"delivery_point": "01",
"delivery_point_check_digit": "0"
},
"metadata": {
"record_type": "S",
"zip_type": "Standard",
"county_fips": "02090",
"county_name": "Fairbanks North Star",
"carrier_route": "C004",
"congressional_district": "AL",
"rdi": "Commercial",
"elot_sequence": "0001",
"elot_sort": "A",
"latitude": 64.75233,
"longitude": -147.35297,
"precision": "Zip8",
"time_zone": "Alaska",
"utc_offset": -9,
"dst": true
},
"analysis": {
"dpv_match_code": "Y",
"dpv_footnotes": "AABB",
"dpv_cmra": "N",
"dpv_vacant": "N",
"active": "Y",
"footnotes": "L#"
}
]
存储API输出后,问题是尝试将返回的输出(Sample output)解析为CSV格式。代码我试图这样做:
f = open('output.json')
data = json.load(f)
data_1 = data['analysis']
data_2 = data['metadata']
data_3 = data['components']
entity_data = open('TEST.csv','w')
csvwriter = csv.writer(entity_data)
count = 0
count2 = 0
count3 = 0
for ent in data_1:
if count == 0:
header = ent.keys()
csvwriter.writerow(header)
count += 1
csvwriter.writerow(ent.values())
for ent_2 in data_2:
if count2 == 0:
header2 = ent_2.keys()
csvwriter.writerow(header2)
count2 += 1
csvwriter.writerow(ent_2.values())
for ent_3 in data_3:
if count3 == 0:
header3 = ent_3.keys()
csvwriter.writerow(header3)
count3 += 1
csvwriter.writerow(ent_3.values())
entity_data.close()
返回以下错误:TypeError:字符串索引必须是整数。正如有人善意地评论并指出,我似乎在迭代键而不是不同的词典,这就是我被卡住的地方,因为我不确定该怎么做?根据我的理解,看起来JSON被分成3个不同的数组,每个数组都有JSON对象,但根据结构,情况似乎并非如此?我为代码的长度道歉,但我想要与我想要实现的内容有一些相似之处。
答案 0 :(得分:1)
考虑使用pandas的json_normalize()
方法将嵌套项目展平为表格式df结构:
import pandas as pd
from pandas.io.json import json_normalize
import json
with open('Output.json') as f:
data = json.load(f)
df = json_normalize(data)
df.to_csv('Output.csv')
请注意组件,元数据和分析会成为相应值的以句点分隔的前缀。如果不需要,请考虑重命名列。
答案 1 :(得分:0)
您正在使用json保存请求result.text
。 result.text
是一个字符串,因此在通过json重新读取它时,您将获得相同的一个长字符串而不是list
。尝试按原样编写result.text
:
output = 'output.json'
with open(output,'w') as of:
of.write(ss_output)
这就是你提到TypeError:string indices must be integers
的原因。
其余代码有多个问题。
json中的数据是一个dicts列表,所以要得到data_1
你需要列表理解,如下所示:
data_1 = [x['analysis'] for x in data]
您可以将三种类型的行写入同一个csv文件:components,metadata和analyzis。那太奇怪了。
可能你必须重写代码的后半部分:每个数据类型打开三个csv_writers,然后迭代data
个项目并将它们的字段写入相应的csv_writer。