在bash中对csv列进行排序,将bash输出读入python变量

时间:2010-10-15 23:40:14

标签: python bash shell

您好我在多个csv文件中有大量数据并使用grep过滤掉数据集:

user@machine:~/$ cat data.csv | grep -a "63[789]\...;"
637.05;1450.2
637.32;1448.7
637.60;1447.7
637.87;1451.5
638.14;1454.2
638.41;1448.6
638.69;1445.8
638.96;1440.0
639.23;1431.9
639.50;1428.8
639.77;1427.3

我想弄清楚具有最高计数的数据集,右边的列;然后知道相应的值(左边的;)。在这种情况下,我正在寻找的集合将是638.14; 1454.2

我尝试了不同的东西,结果使用了bash和python的组合,这有效,但不是很漂亮:

os.system('ls | grep csv > filelist')
files = open("filelist")
files = files.read()
files = files.split("\n")

for filename in files[0:-1]:
  os.system('cat ' + filename + ' | grep -a "63[6789]\...;" > filtered.csv')
  filtered = csv.reader(open('filtered.csv'), delimiter=';')
  sortedlist = sorted(filtered_file, key=operator.itemgetter(1), reverse=True)
  dataset = sortedlist[0][0] + ';' + sortedlist[0][1] + '\n'

我希望有一个只有bash的解决方案(cut,awk,数组?!?)但是无法理解它。另外,我不喜欢将bash命令写入文件然后将它们读入python变量的工作。我可以直接将它们读入变量,还是有更好的解决方案来解决这个问题? (可能是perl等......但我真的对bash解决方案感兴趣..)

非常感谢!!

7 个答案:

答案 0 :(得分:6)

快速的单行将是:

grep -a "63[789]\...;" data.csv | sort -n -r -t ';' -k 2 | head --lines=1

这只是根据第二列以数字方式对文件进行排序,然后打印出第一行。希望有所帮助。

答案 1 :(得分:3)

如果您打算使用Python,那么请使用Python。为什么要将bash命令混合在一起?它使您的代码不可移植/依赖于bash环境。

import os
import glob
import operator
os.chdir("/mypath")
for file in glob.glob("*.csv"):
    data=open(file).readlines()
    data=[i.strip().split(";") for i in data if i[:3] in ["637","638","639"]]
    # data=[i.strip().split(";") for i in data if i[:3] in ["637","638","639"] and isinstance(float(i[:6]),float) ]
    sortedlist = sorted(data, key=operator.itemgetter(1), reverse=True)
    print "Highest for file %s: %s" % (file,sortedlist[0])

或者,如果您对bash +工具解决方案更感兴趣

find . -type f -name '*.csv' |while read -r FILE
do
 grep -a "63[789]\...;" "$FILE" | sort -n -r -t ';' -k 2 | head -1  >> output.txt
done

答案 2 :(得分:1)

$ cat data.csv | grep -a "63[789]\...;" | awk 'BEGIN {FS=";"} $2>max{max=$2; val=$1} END {print "max " max " at " val}' 

max 1454.2 at 638.14

答案 3 :(得分:1)

如果您有大量数据,那么您不希望所有数据存储到内存中,然后排序以获取最大值。关于计算时间复杂度和内存,这种方法效率低

您可以简单地解析文件并在运行中计算所需的值。一种快速纯Python方法来处理您的问题:

import os, re
os.chdir('/path/to/csvdir')
for f in os.listdir('.'):
    dataset, count = 0.0, 0.0
    for line in open(f):
        if re.search(r'63[6789]\...', line):
            d, c = map(float, line.strip().split(';'))
            if count < c:
                dataset, count = d, c
    print f, dataset

通过修改相应的行,此方法还可用于显示最大值列表(如果可以有多个具有最高计数的数据集):

dataset, count = [], 0.0
...
        if count < c:
            dataset, count = [d], c
        elif count == c:
            dataset.append(d)

编辑:该脚本假定您的csvdir仅填充包含解析格式的文件。如果要按名称过滤它们,可以使用glob(在名称过滤中具有有限的正则表达式功能):

for f in glob.glob('*.csv'):

或将过滤器应用于os.listdir

for f in filter(lambda f: re.match('.*\.csv', f), os.listdir('.')):

答案 4 :(得分:1)

以下是我使用python对csv文件进行排序的代码。它允许您指定多个列,并使用减号按相反顺序排序。

#!/usr/bin/env python
# Usage:
# (1) sort ctb_consolidated_test_id.csv by Academic Year, Test ID, Period, and Test Name, with Test ID in descending order
#   sort_csv.py -c "Academic Year" -c "-Test ID" -c "Period" -c "Test Name" ctb_consolidated_test_id.csv
from __future__ import with_statement
from __future__ import print_function

import sys

def multikeysort(items, columns):
    from operator import itemgetter
    import re
    num_re = re.compile(r'^\d+$')
    comparers = [
        ((itemgetter(col[1:].strip()), -1) if col.startswith('-') else (itemgetter(col.strip()), 1))
        for col in columns
    ]
    def number_comparable(val1, val2):
        return len(val1) != len(val2) and num_re.match(val1) and num_re.match(val2)
    def column_comparer(left, right):
        for fn, mult in comparers:
            val1, val2 = fn(left), fn(right)
            if number_comparable(val1, val2):
                val1, val2 = int(val1), int(val2)
            result = cmp(val1, val2)
            if result:
                return mult * result
        return 0
    return sorted(items, cmp=column_comparer)

def sort_csv(filename, columns):
    import csv
    with open(filename, "r") as f:
        reader = csv.DictReader(f)
        writer = csv.DictWriter(sys.stdout, reader.fieldnames)
        writer.writerow(dict(zip(reader.fieldnames, reader.fieldnames)))
        writer.writerows(multikeysort(reader, columns))

if __name__ == '__main__':
    from glob import glob
    from optparse import OptionParser, make_option
    option_list = [
        make_option('-c', '--column', dest='columns', action='append', metavar='COLUMN NAME'),
    ]
    parser = OptionParser(option_list=option_list)
    (options, args) = parser.parse_args()
    filenames = (filename for arg in args for filename in glob(arg))
    for filename in filenames:
        sort_csv(filename, options.columns)

答案 5 :(得分:0)

很好,非常感谢,Hakop Palyan !!

现在有一个关于如何从所有csv文件中获取此数据集并将其作为新文件收集到某处的技巧?

之类的东西
 find . -name '*.csv' -print0 | xargs -0 grep -a "63[789]\...;" | sort -n -r -t ';' -k 2 | head --lines=1

这个只打印第一行,我需要遍历各个文件并收集数据集......

答案 6 :(得分:0)

我知道您正在寻找基于bash的解决方案,但我无法使用csv模块提供一些内容。

import os
import csv
import re

target_re = re.compile(r'^63[789]\.\d\d$')
csv_filenames = [f for f in os.listdir('.') if f.endwith('.csv')]
largest_in_each_file = []

for f in csv_filenames:
    largest = (None, 0)
    for a,b in csv.reader(open(f, 'rb'), delimiter=';'):
        if target_re.match(a) and b > largest[1]:
            largest = (a, b)
    largest_in_each_file.append(largest)


largest_overall = largest_in_each_file[0]
for largest in largest_in_each_file:
    print "%s;%s in %s" % largest
    if largest[1] > largest_overall[1]:
        largest_overall = largest

print "-" * 10
print "%s;%s in %s is the largest record in all files" % largest_overall