如何使用R中的'tm'包在语料库中设置TF权重

时间:2016-09-12 10:33:51

标签: r tm

我想知道如何在tm packge中得到频率权重这个词(tf =文件中的术语/总词数)`

MyMatrix <- DocumentTermMatrix(a, control = list(weight= weightTf))

使用此重量后,它会显示术语的频率而非TF重量,如此

Doc(1)  1   0   0   3   0   0   2
Doc(2)  0   0   0   0   0   0   0
Doc(3)  0   5   0   0   0   0   1
Doc(4)  0   0   0   2   2   0   0
Doc(5)  0   4   0   0   0   0   1
Doc(6)  5   0   0   0   1   0   0
Doc(7)  0   5   0   0   0   0   0
Doc(8)  0   0   0   1   0   0   7

2 个答案:

答案 0 :(得分:0)

像MyMatrix / rowSums(MyMatrix)这样的东西可以给你想要的结果。

但是如果一个文档没有术语(DTM的文档全部为零),则上面会产生一行NaN,如下所示(如你的情况)

Doc(1) 0.1111111   0   0 0.5555556 0.1111111 0.2222222 0.0000000
Doc(2) 0.0000000   1   0 0.0000000 0.0000000 0.0000000 0.0000000
Doc(3)       NaN NaN NaN       NaN       NaN       NaN       NaN
Doc(4) 1.0000000   0   0 0.0000000 0.0000000 0.0000000 0.0000000
Doc(5) 0.0000000   0   0 0.0000000 0.2857143 0.5714286 0.1428571

因此,更好的方法是:

t(apply(myMatrix, 1, function(x) if(sum(x) != 0) x / sum(x) else x))

带有所需的结果:

Doc(1) 0.1111111  0  0 0.5555556 0.1111111 0.2222222 0.0000000
Doc(2) 0.0000000  1  0 0.0000000 0.0000000 0.0000000 0.0000000
Doc(3) 0.0000000  0  0 0.0000000 0.0000000 0.0000000 0.0000000
Doc(4) 1.0000000  0  0 0.0000000 0.0000000 0.0000000 0.0000000
Doc(5) 0.0000000  0  0 0.0000000 0.2857143 0.5714286 0.1428571

答案 1 :(得分:0)

例如

library(tm)
corp <- Corpus(VectorSource(c(doc1="hello world", doc2="hello new world")))
myfun <-  WeightFunction(function(m) { 
  cs <- slam::col_sums(m) 
  m$v <- m$v/cs[m$j] 
  return(m) 
}, "Term Frequency by Total Document Term Frequency", "termbytot") 
dtm <- DocumentTermMatrix(corp, control = list(weighting = myfun))
inspect(dtm)
# <<DocumentTermMatrix (documents: 2, terms: 3)>>
# Non-/sparse entries: 5/1
# Sparsity           : 17%
# Maximal term length: 5
# 
#     Terms
# Docs     hello       new     world
#    1 0.5000000 0.0000000 0.5000000
#    2 0.3333333 0.3333333 0.3333333