根据我在an earlier question收到的答案,我编写了一个ETL程序,如下所示:
import pandas as pd
from dask import delayed
from dask import dataframe as dd
def preprocess_files(filename):
"""Reads file, collects metadata and identifies lines not containing data.
"""
...
return filename, metadata, skiprows
def load_file(filename, skiprows):
"""Loads the file into a pandas dataframe, skipping lines not containing data."""
return df
def process_errors(filename, skiplines):
"""Calculates error metrics based on the information
collected in the pre-processing step
"""
...
def process_metadata(filename, metadata):
"""Analyses metadata collected in the pre-processing step."""
...
values = [delayed(preprocess_files)(fn) for fn in file_names]
filenames = [value[0] for value in values]
metadata = [value[1] for value in values]
skiprows = [value[2] for value in values]
error_results = [delayed(process_errors)(arg[0], arg[1])
for arg in zip(filenames, skiprows)]
meta_results = [delayed(process_metadata)(arg[0], arg[1])
for arg in zip(filenames, metadata)]
dfs = [delayed(load_file)(arg[0], arg[1])
for arg in zip(filenames, skiprows)]
... # several delayed transformations defined on individual dataframes
# finally: categorize several dataframe columns and write them to HDF5
dfs = dd.from_delayed(dfs, meta=metaframe)
dfs.categorize(columns=[...]) # I would like to delay this
dfs.to_hdf(hdf_file_name, '/data',...) # I would also like to delay this
all_operations = error_results + meta_results # + delayed operations on dask dataframe
# trigger all computation at once,
# allow re-using of data collected in the pre-processing step.
dask.compute(*all_operations)
ETL过程经历了几个步骤:
process_metadata
,process_errors
,load_file
)具有共享数据依赖性,因为它们都使用在预处理步骤中收集的信息。理想情况下,预处理步骤只运行一次,结果跨进程共享。 我遇到的问题是,categorize
和to_hdf
会立即触发计算,丢弃元数据和错误数据,否则将由process_errors
和{{1进一步处理}}。
我被告知延迟process_metadata
上的操作会导致问题,这就是为什么我会非常有兴趣知道是否有可能触发整个计算(处理元数据,处理错误,加载数据帧,转换)数据帧并以HDF格式存储它们,允许不同的进程共享在预处理阶段收集的数据。
答案 0 :(得分:4)
有两种方法可以解决您的问题:
to_hdf调用接受compute=
关键字参数,您可以将其设置为False。如果为False,它会返回dask.delayed
值,您可以随时计算它。
但是,如果要继续使用dask.dataframe,则需要立即计算分类调用。我们无法在不立即查看数据的情况下创建一致的dask.dataframe。最近关于联盟分类的Pandas的改进将让我们在将来改变它,但是现在你已经陷入困境。如果这是一个阻止你,那么你必须切换到dask.delayed
并手动处理df.to_delayed()
如果您使用distributed scheduler,则可以使用.persist
method进行计算。
from dask.distributed import Executor
e = Executor() # make a local "cluster" on your laptop
delayed_values = e.persist(*delayed_values)
... define further computations on delayed values ...
results = dask.compute(results) # compute as normal
这将允许您触发一些计算,仍然可以继续定义您的计算。您持久保存的值将保留在内存中。