我试图在PySpark中使用我在Kaggle上找到的住房数据集来做一个非常简单的<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<div class="some-class">Click me - item #1</div>
<div class="some-class">Click me - item #2</div>
。有一堆专栏,但为了使这个(几乎)尽可能简单,我只保留了两个专栏(在开始使用所有专栏之后),并且仍然没有运气模型训练。以下是在进行回归步骤之前数据框的样子:
LinearRegression
我使用以下代码训练模型:
2016-09-07 17:12:08,804 root INFO [Row(price=78000.0, sqft_living=780.0, sqft_lot=16344.0, features=DenseVector([780.0, 16344.0])), Row(price=80000.0, sqft_living=430.0, sqft_lot=5050.0, features=DenseVector([430.0, 5050.0])), Row(price=81000.0, sqft_living=730.0, sqft_lot=9975.0, features=DenseVector([730.0, 9975.0])), Row(price=82000.0, sqft_living=860.0, sqft_lot=10426.0, features=DenseVector([860.0, 10426.0])), Row(price=84000.0, sqft_living=700.0, sqft_lot=20130.0, features=DenseVector([700.0, 20130.0])), Row(price=85000.0, sqft_living=830.0, sqft_lot=9000.0, features=DenseVector([830.0, 9000.0])), Row(price=85000.0, sqft_living=910.0, sqft_lot=9753.0, features=DenseVector([910.0, 9753.0])), Row(price=86500.0, sqft_living=840.0, sqft_lot=9480.0, features=DenseVector([840.0, 9480.0])), Row(price=89000.0, sqft_living=900.0, sqft_lot=4750.0, features=DenseVector([900.0, 4750.0])), Row(price=89950.0, sqft_living=570.0, sqft_lot=4080.0, features=DenseVector([570.0, 4080.0]))]
我得到的错误是:
standard_scaler = StandardScaler(inputCol='features',
outputCol='scaled')
lr = LinearRegression(featuresCol=standard_scaler.getOutputCol(), labelCol='price', weightCol=None,
maxIter=100, tol=1e-4)
pipeline = Pipeline(stages=[standard_scaler, lr])
grid = (ParamGridBuilder()
.baseOn({lr.labelCol: 'price'})
.addGrid(lr.regParam, [0.1, 1.0])
.addGrid(lr.elasticNetParam, elastic_net_params or [0.0, 1.0])
.build())
ev = RegressionEvaluator(metricName="rmse", labelCol='price')
cv = CrossValidator(estimator=pipeline,
estimatorParamMaps=grid,
evaluator=ev,
numFolds=5)
model = cv.fit(data).bestModel
有什么想法吗?
答案 0 :(得分:1)
在这种情况下,您无法使用Pipeline
。当您致电pipeline.fit
时,它会转换为(大致)
standard_scaler_model = standard_scaler.fit(dataframe)
lr_model = lr.fit(dataframe)
但你确实需要
standard_scaler_model = standard_scaler.fit(dataframe)
dataframe = standard_scaler_model.transform(dataframe)
lr_model = lr.fit(dataframe)
错误是因为您的lr.fit
无法找到StandardScaler
模型的输出(即转换结果)。