我正在尝试Kaggle房价挑战:https://www.kaggle.com/c/house-prices-advanced-regression-techniques
这是我写的脚本
expect(list.first().getId()).toEqual(specific.id());
expect(list.first().getAttribute("outerHTML")).toEqual(specific.getAttribute("outerHTML"));
数据包含70多个功能,我使用train <- read.csv("train.csv")
train$Id <- NULL
previous_na_action = options('na.action')
options(na.action = 'na.pass')
sparse_matrix <- sparse.model.matrix(SalePrice~.-1,data = train)
options(na.action = previous_na_action)
model <- xgboost(data = sparse_matrix, label = train$SalePrice, missing = NA, max.depth = 6, eta = 0.3, nthread = 4, nrounds = 16, verbose = 2, objective = "reg:linear")
importance <- xgb.importance(feature_names = sparse_matrix@Dimnames[[2]], model = model)
print(xgb.plot.importance(importance_matrix = importance))
xgboost
= 6且max.depth
= 16。
我得到的重要情节非常混乱,我如何只查看前5个特征或其他东西。
答案 0 :(得分:3)
查看top_n
的{{1}}参数。它完全符合您的要求。
xgb.plot.importance
编辑:仅限xgboost的开发版本。替代方法是这样做:
# Plot only top 5 most important variables.
print(xgb.plot.importance(importance_matrix = importance, top_n = 5))
答案 1 :(得分:0)
xgbImp1 <- xgb.importance(model = model)
这将确定模型的重要功能。
xgbImp1 <- xgbImp1 %>% mutate(rank = dense_rank(desc(Gain)))
这将为每个功能提供排名,因此我们可以将其更改为前5、10、15和20。
ggplot(data=xgbImp1[which(xgbImp1$rank <= 20),], aes(x = reorder(Feature, -Gain), y = Gain)) +
geom_bar(stat="identity") +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
labs(title = "XG Boosted Feature Importance (Top 20)", x = "Features", y = "Information Gain")