考虑矩阵{"error": "Please use POST request"}
,它是形状为quantiles
的3D矩阵的子集[:8,:3,0]
。
(10,355,8)
我想要一个与quantiles = np.array([
[ 1. , 1. , 1. ],
[ 0.63763978, 0.61848863, 0.75348137],
[ 0.43439645, 0.42485407, 0.5341457 ],
[ 0.22682343, 0.18878366, 0.25253915],
[ 0.16229408, 0.12541476, 0.15263742],
[ 0.12306046, 0.10372971, 0.09832783],
[ 0.09271845, 0.08209844, 0.05982584],
[ 0.06363636, 0.05471266, 0.03855727]])
矩阵形状相同的布尔输出,其中quantiles
标记中位数所在的行:
True
为实现这一目标,我有以下算法:
1)确定大于In [21]: medians
Out[21]:
array([[False, False, False],
[ True, True, False],
[False, False, True],
[False, False, False],
[False, False, False],
[False, False, False],
[False, False, False],
[False, False, False]], dtype=bool)
的条目:
.5
2)仅考虑In [22]: quantiles>.5
Out[22]:
array([[ True, True, True],
[ True, True, True],
[False, False, True],
[False, False, False],
[False, False, False],
[False, False, False],
[False, False, False],
[False, False, False]], dtype=bool)
操作的值子集,标记最小化条目与quantiles>.5
之间np.abs
距离的行。稍微折磨术语,我希望与.5
和np.argmin(np.abs(quantiles-.5),axis=0)
的两个矩阵相交以得到上述结果。但是,我不能为我的生活找到一种方法来对子集执行quantiles>.5
并保留np.argmin
矩阵的形状。
PS。是的,有一个类似的问题here但是它并没有实现我的算法,我认为这可能在更大范围内更有效
答案 0 :(得分:1)
进入mask
中的旧Numpy
操作,我找到了以下解决方案
#mask quantities that are less than .5
masked_quantiles = ma.masked_where(quantiles<.5,quantiles)
#identify the minimum in column of the masked array
median_idx = np.where(masked_quantiles == masked_quantiles.min(axis=0))
#make a matrix of all False values
median_mat = np.zeros(quantiles.shape, dtype=bool)
#assign True value to corresponding rows
In [86]: median_mat[medians] = True
In [87]: median_mat
Out[87]:
array([[False, False, False],
[ True, True, False],
[False, False, True],
[False, False, False],
[False, False, False],
[False, False, False],
[False, False, False],
[False, False, False]], dtype=bool)
我进行了两次比较,一次是针对此问题提供的样本二维矩阵,一种是关于我的3D (10,380,8)
数据集(不是任何大数据)。
我的代码
%%timeit
masked_quantiles = ma.masked_where(quantiles<=.5,quantiles)
median_idx = masked_quantiles.argmin(0)
10000 loops, best of 3: 65.1 µs per loop
Divakar的代码
%%timeit
mask1 = quantiles<=0.5
min_idx = (quantiles+mask1).argmin(0)
The slowest run took 17.49 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 5.92 µs per loop
我的代码:
%%timeit
masked_quantiles = ma.masked_where(quantiles<=.5,quantiles)
median_idx = masked_quantiles.argmin(0)
1000 loops, best of 3: 490 µs per loop
Divakar的代码:
%%timeit
mask1 = quantiles<=0.5
min_idx = (quantiles+mask1).argmin(0)
10000 loops, best of 3: 172 µs per loop
np.ma.where
掩蔽操作比矩阵添加花费的时间更长。但是,需要存储添加操作,而在较大的数据集上屏蔽可能更有效。我想知道如何比较一些不符合或几乎不符合记忆的东西。
答案 1 :(得分:1)
这是使用broadcasting
和一些屏蔽技巧的方法 -
# Mask of quantiles lesser than or equal to 0.5 to select the invalid ones
mask1 = quantiles<=0.5
# Since we are dealing with quantiles, the elems won't be > 1,
# which can be leveraged here as we will add 1s to invalid elems, and
# then look for argmin across each col
min_idx = (np.abs(quantiles-0.5)+mask1).argmin(0)
# Let some broadcasting magic happen here!
out = min_idx == np.arange(quantiles.shape[0])[:,None]
分步运行
1)输入:
In [37]: quantiles
Out[37]:
array([[ 1. , 1. , 1. ],
[ 0.63763978, 0.61848863, 0.75348137],
[ 0.43439645, 0.42485407, 0.5341457 ],
[ 0.22682343, 0.18878366, 0.25253915],
[ 0.16229408, 0.12541476, 0.15263742],
[ 0.12306046, 0.10372971, 0.09832783],
[ 0.09271845, 0.08209844, 0.05982584],
[ 0.06363636, 0.05471266, 0.03855727]])
2)运行代码:
In [38]: mask1 = quantiles<=0.5
...: min_idx = (np.abs(quantiles-0.5)+mask1).argmin(0)
...: out = min_idx == np.arange(quantiles.shape[0])[:,None]
...:
3)分析每一步的输出:
In [39]: mask1
Out[39]:
array([[False, False, False],
[False, False, False],
[ True, True, False],
[ True, True, True],
[ True, True, True],
[ True, True, True],
[ True, True, True],
[ True, True, True]], dtype=bool)
In [40]: np.abs(quantiles-0.5)+mask1
Out[40]:
array([[ 0.5 , 0.5 , 0.5 ],
[ 0.13763978, 0.11848863, 0.25348137],
[ 1.06560355, 1.07514593, 0.0341457 ],
[ 1.27317657, 1.31121634, 1.24746085],
[ 1.33770592, 1.37458524, 1.34736258],
[ 1.37693954, 1.39627029, 1.40167217],
[ 1.40728155, 1.41790156, 1.44017416],
[ 1.43636364, 1.44528734, 1.46144273]])
In [41]: (np.abs(quantiles-0.5)+mask1).argmin(0)
Out[41]: array([1, 1, 2])
In [42]: min_idx == np.arange(quantiles.shape[0])[:,None]
Out[42]:
array([[False, False, False],
[ True, True, False],
[False, False, True],
[False, False, False],
[False, False, False],
[False, False, False],
[False, False, False],
[False, False, False]], dtype=bool)
提升绩效:在评论之后,似乎得到了min_idx,我们可以这样做:
min_idx = (quantiles+mask1).argmin(0)
这主要关注内存效率。
# Mask of quantiles greater than 0.5 to select the valid ones
mask = quantiles>0.5
# Select valid elems
vals = quantiles.T[mask.T]
# Get vald count per col
count = mask.sum(0)
# Get the min val per col given the mask
minval = np.minimum.reduceat(vals,np.append(0,count[:-1].cumsum()))
# Get final boolean array by just comparing the min vals across each col
out = np.isclose(quantiles,minval)